Skip to main content
Log in

Comparison between the shock wave and chemical initiation in detonation of acetylene—oxygen mixtures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Detonation of different compositions of acetylene-oxygen mixtures by both chlorine gas injection and a shock wave as initiators is studied in this research. The chlorine gas is injected into the detonation tube through a reticular plate nozzle at the moment when a thin aluminum foil separating the injection system from the detonation tube is torn by a pressurized nitrogen gas. The results of experiments show that chemical initiation may be as effective as direct initiation of detonation and, therefore, replace more complicated methods of initiation. The best results are obtained in acetylene— oxygen mixtures with the molar ratio of 1: 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Nikolaev, A. A. Vasil’ev, and V. Yu. Ul’yanitskii, “Gas detonation and its application in engineering and technologies (review),” Combust., Expl., Shock Waves, 39, No. 4, 382–410 (2003).

    Article  Google Scholar 

  2. A. M. Milne, “Detonation in heterogeneous mixtures of liquids and particles,” Shock Waves, 10, 351–362 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. A. A. Vasil’ev, “Detonation combustion of gas mixtures using a hypervelocity projectile,” Combust., Expl., Shock Waves, 33, No. 5, 583–597 (1997).

    Article  Google Scholar 

  4. B. E. Gel’fand, “Detonation limits of air mixtures with two-component gaseous fuels,” Combust., Expl., Shock Waves, 38, No. 5, 581–584 (2002).

    Article  Google Scholar 

  5. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous spin detonation in fuel-air mixtures,” Combust., Expl., Shock Waves, 42, No. 4, 463–471 (2006).

    Article  Google Scholar 

  6. J. Card, D. Rival, and G. Ciccarelli, “DDT in fuel-air mixtures at elevated temperatures and pressures,” Shock Waves, 14, No. 3, 167–173 (2005).

    Article  ADS  Google Scholar 

  7. M. Kolesnikov, V. A. Vinokurov, S. I. Kolesnikov, and A. V. Yablonskii, “Mechanism of combustion of fuel-air mixtures,” Chem. Technol. Fuels Oils, 37, No. 5, 329–334 (2001).

    Article  Google Scholar 

  8. I. Goldfarb, V. Gol’dshtein, J. B. Greenberg, and A. Zinoviev, “Thermal explosion in a hot gas mixture with organic gel fuel droplets,” J. Eng. Math., 56, 129–142 (2006).

    Article  MathSciNet  Google Scholar 

  9. E. N. Aleksandrov, N. M. Kuznetsov, and S. N. Kozlov, “Initiation of chain and thermal explosions by the reactor surface. Criterion for the participation of branching chains in a thermal explosion,” Combust., Expl., Shock Waves, 43, No. 5, 530–537 (2007).

    Article  Google Scholar 

  10. S. M. Frolov, V. S. Aksenov, and V. Ya. Basevich, “Detonation initiation by shock wave interaction with the prechamber jet ignition zone,” Phys. Chem., 410, Part 1, 255–259 (2006).

    Google Scholar 

  11. M. A. Nettleton, “Recent work on gaseous detonations,” Shock Waves, 12, 3–12 (2002).

    Article  MATH  ADS  Google Scholar 

  12. F. A. Bykovskii, V. V. Mitrofanov, and E. F. Vedernikov, “Continuous detonation combustion of fuel-air mixtures,” Combust., Expl., Shock Waves, 33, No. 3, 344–353 (1997).

    Article  Google Scholar 

  13. J. H. Lee, R. Knystautas, and N. Yoshikawa, “Photochemical initiation of gaseous detonations,” Acta Austronautica, No. 5, 971–982 (1978).

    Article  Google Scholar 

  14. J. H. S. Lee and R. Knystautas, Photochemical Initiation of Detonation in Gaseous Explosive Media, Defense Technical Information Center (1977).

  15. R. Knystautas, J. H. Lee, and I. O. Moen, “Fundamental mechanism of unconfined detonation of fuel-air explosions,” AFOSR-TR-80-0323, Department of Mechanical Engineering, McGill University (1980).

  16. É. I. Sokolova, A. F. Revsin, and V. Ya. Shtern, “Nature of the acetylene-chlorine mixture explosion caused by small addition of oxygen. I. Kinetic characteristics of the reaction,” Kinet. Katal., 11, No. 5, 1093–1101 (1970).

    Google Scholar 

  17. É. I. Sokolova, A. F. Revsin, V. Ya. Shtern, “Nature of the acetylene-chlorine mixture explosion caused by small addition of oxygen. II. Products and mechanisms of the reaction,” Kinet. Katal., 11, No. 6, 1365–1370 (1970).

    Google Scholar 

  18. Ja. V. Shtern, E. I. Sokolova, and A. F. Revsin, “Explosion of acetylene-chlorine mixture at room temperatures initiated by small additions of oxygen: Kinetic study and mechanism,” Int. J. Chem. Kinet., 5, 593 (1973).

    Article  Google Scholar 

  19. A. F. Revsin, “Mechanism of acetylene-chlorine mixture explosion initiated by small additions of oxygen,” Int. J. Chem. Kinet., 15, 1–4 (1983).

    Article  Google Scholar 

  20. G. Von Elbe and E. T. McHale, “Chemical initiation of FAE clouds,” AFOSR-TR-81-0255, Atlantic Research Corporation Combustion and Physical Science Department (1980).

  21. D. C. Sayles and Huntsville, “Method of generating single-event, unconfined fuel-air detonation,” US Patent No. 4,463,680 (1984).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Moosavi.

Additional information

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 6, pp. 60–65, November–December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moosavi, S.M., Ahmadzadeh, I., Mollaei, A. et al. Comparison between the shock wave and chemical initiation in detonation of acetylene—oxygen mixtures. Combust Explos Shock Waves 46, 666–671 (2010). https://doi.org/10.1007/s10573-010-0087-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0087-4

Key words

Navigation