Skip to main content
Log in

Numerical simulation of aerodynamics and combustion of a gas mixture in a channel with sudden expansion

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A physicomathematical model and results of numerical simulations of aerodynamics and combustion of a swirled flow of an aluminum-air mixture in an axisymmetric channel with sudden expansion are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Egorov, Combustion of Disperse Aluminum in an Air Flow [in Russian], Izd. Samar. Nauch. Tsentra Ross. Akad. Nauk, Samara (2008).

    Google Scholar 

  2. M. A. Gurevich, G. E. Ozerova, and A. M. Stepanov, “Calculation of the propagation velocity of the flame with gaseous particles of the solid fuel,” in: Combustion and Explosion [in Russian], Nauka, Moscow (1972), pp. 199–203.

    Google Scholar 

  3. B. P. Ustimenko, K. B. Dzhakupov, and V. O. Krol’, Numerical Simulation of Aerodynamics and Combustion in Burners and Technological Devices [in Russian], Nauka, Alma-Ata (1986).

    Google Scholar 

  4. L. B. Gavin, V. A. Medvedev, and V. A. Naumov, “Model of a two-phase turbulent jet with heterogeneous particle combustion taken into account,” Combust., Expl., Shock Waves, 24, No. 3, 271–276 (1988).

    Article  Google Scholar 

  5. V. A. Arkhipov, O. V. Matvienko, and V. F. Trofimov, “Combustion of sprayed liquid fuel in a swirling flow,” Combust., Expl., Shock Waves, 41, No. 2, 140–150 (2005).

    Article  Google Scholar 

  6. V. G. Shevchuk, S. V. Goroshin, L. A. Klyachko, et al., “Flame propagation rate in gaseous suspensions of magnesium particles,” Combust., Expl., Shock Waves, 16, No. 1, 52–57 (1980).

    Article  Google Scholar 

  7. V. N. Vilyunov, A. B. Vorozhtsov, and Yu.V. Feshchenko, “Modeling of two-phase flow of a gas mixture with burning metal particles in a semienclosed channel,” Combust., Expl., Shock Waves, 25, No. 3, 296–300 (1989).

    Article  Google Scholar 

  8. V. P. Bobryshev, V. D. Lisitsa, and F. F. Spiridonov, Physicomathematical Modeling of Intrachamber Dynamics of Solid-Propellant Rocket Motors [in Russian], TsNII NTI KPK, Moscow (1993).

    Google Scholar 

  9. V. I. Malinin, E. I. Kolomin, and I. S. Antipin, “Model of combustion of a high-velocity flow of a suspension of aluminum particles in air with allowance for the kinetics of the processes and specific features of oxide accumulation,” Khim. Fiz., 17, No. 10, 80–92 (1998).

    Google Scholar 

  10. D. A. Yagodnikov, “Organization of ignition and combustion of powdered metals in combustion chambers with reactive propulsion,” Doct. Dissertation in Tech. Sci., Moscow State Technical University, Moscow (1997).

    Google Scholar 

  11. M. A. Gurevich, G. E. Ozerova, and A. M. Stepanov, “Calculation of the burning rate of metal particle with allowance for oxide condensation,” in: Combustion and Explosion [in Russian], Nauka, Moscow (1972), pp. 175–181.

    Google Scholar 

  12. V. I. Malinin, “Organization of intrachamber processes in propulsive and technological facilities operating on metal fuels,” Doct. Dissertation in Tec. Sci., Perm’ State Technical University, Izhevsk (2007).

    Google Scholar 

  13. Yu. G. Gubarev and B. A. Lugovtsov, “Spontaneous swirling in axisymmetric flows,” in: Mathematical Problems of Mechanics of Continuous Media, Abstracts of IX Int. Conf. “Lavrent’ev Readings,” Lavrent’ev Institute of Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (1995), p. 69.

    Google Scholar 

  14. A. G. Egorov, “Control of parameters of an aluminum- air flame by means of swirling the cocurrent air flow,” in: Basic and Applied Problems of Modern Mechanics, Proc. Conf., Izd. Tomsk. Univ., Tomsk (2008), pp. 460–461.

    Google Scholar 

  15. V.M. Gremyachkin, A. G. Istratov, and O. I. Leipunskii, “Theory of burning of metal particles,” in: Physical Processes in Combustion and Explosion [in Russian], Atomizdat, Moscow (1980), pp. 4–68.

    Google Scholar 

  16. M. W. Beckstead, “Correlating aluminum burning times,” Combust., Expl., Shock Waves, 41, No. 5, 533–546 (2005).

    Article  Google Scholar 

  17. M. W. Beckstead, Y. Liang, and K. V. Padduppakkam, “Numerical simulation of single aluminum particle combustion (review),” Combust., Expl., Shock Waves, 41, No. 6, 622–638 (2005).

    Article  Google Scholar 

  18. V. A. Babuk, “Problems of studying formation of smoke oxide particles in combustion of aluminized solid propellants,” Combust., Expl., Shock Waves, 43, No. 1, 38–45 (2007).

    Article  Google Scholar 

  19. P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, et al., Combustion of Powdered Metals in Active Media [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  20. V. A. Arkhipov, V. A. Ermakov, and A. A. Razdobreev, “Dispersity of condensed products of combustion of an aluminum drop,” Combust., Expl., Shock Waves, 18, No. 2, 139–141 (1982).

    Article  Google Scholar 

  21. D. A. Yagodnikov and E. I. Gusachenko, “Experimental study of the disperse composition of condensed products of aluminum-particle combustion in air,” Combust., Expl., Shock Waves, 40, No. 2, 154–162 (2004).

    Article  Google Scholar 

  22. A. N. Zolotko, Ya. I. Vovchuk, V. G. Shevchuk, and N. I. Poletaev, “Ignition and combustion of dust-gas suspensions,” Combust., Expl., Shock Waves, 41, No. 6, 611–621 (2005).

    Article  Google Scholar 

  23. I. M. Vasenin, V. A. Arkhipov, V. G. Butov, et al., Gas Dynamics of Two-Phase Nozzle Flows [in Russian], Izd. Tomsk. Univ., Tomsk (1986).

    Google Scholar 

  24. B. A. Raizberg, B. T. Erokhin, and K. P. Samsonov, Fundamentals of the Theory of Operation Processes in Solid-Propellant Rocket Systems [in Russian], Mashinostroenie, Moscow (1972).

    Google Scholar 

  25. D. B. Spalding, “Mathematical models of turbulent flames: A review,” Combust. Sci. Technol., 13, 3–25 (1976).

    Google Scholar 

  26. A. Gupta, D. Lilley, and N. Syred, Swirl Flows, Abacus Press, Kent (1984).

    Google Scholar 

  27. A. A. Shraiber, “Multiphase polydisperse flows with a variable fractional composition of disperse inclusions,” in: Results of Science and Technology, Ser. Complex and Special Segments of Mechanics [in Russian], Vol. 3, VINITI, Moscow (1988), pp. 3–80.

    Google Scholar 

  28. M. A. Gurevich, E. S. Ozerov, and A. A. Yurinov, “Effect of an oxide film on the inflammation characteristics of aluminum,” Combust., Expl., Shock Waves, 14, No. 4, 448–451 (1978).

    Article  Google Scholar 

  29. A. V. Fedorov and Yu. V. Kharlamova, “Ignition of an aluminum particle,” Combust., Expl., Shock Waves, 39, No. 5, 544–547 (2003).

    Article  Google Scholar 

  30. D. A. Yagodnikov, E. A. Andreev, V. S. Vorob’ev, and O. G. Glotov, “Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. I. Theoretical study of ignition and combustion of aluminum with fluorine-containing coatings,” Combust., Expl., Shock Waves, 42, No. 5, 534–542 (2006).

    Article  Google Scholar 

  31. N. B. Vargaftik, Handbook on Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  32. Fine-grain aluminum powder ASD-1, ASD-4, and ASD-6: Technical specifications No. 48-5-226-87, Joint- Stock Company SUAL-PM, Shelekhov (1987).

  33. V. A. Arkhipov, S. S. Bondarchuk, A. G. Korotkikh, and M. I. Lerner, “Technology of obtaining of nanoaluminum powders and their dispersion characteristics,” Gorn. Zh., Tsv. Metally (Special issue), No. 4, 58–64 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Arkhipov.

Additional information

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 6, pp. 39–48, November–December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkhipov, V.A., Egorov, A.G., Ivanin, S.V. et al. Numerical simulation of aerodynamics and combustion of a gas mixture in a channel with sudden expansion. Combust Explos Shock Waves 46, 647–655 (2010). https://doi.org/10.1007/s10573-010-0085-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0085-6

Key words

Navigation