Combustion, Explosion, and Shock Waves

, Volume 46, Issue 5, pp 604–608 | Cite as

Synthesis of Cubic Silicon Nitride in a Cylindrical Recovery Capsule

Article

Abstract

Cubic silicon nitride was synthesized from a mixture of hexagonal silicon nitride and copper powder in a cylindrical recovery capsule. It was shown that the synthesis occurred only in the region of the Mach reflection of shock waves near the axis of the capsule. A method of loading the material with ejection of the sample from the capsule into an airtight container was developed. As a result of loading, up to 20% of the starting hexagonal silicon nitride transforms to the cubic phase.

Key words

shock-wave synthesis cubic silicon nitride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Zerr, G. Miehe, et al., “Synthesis of cubic silicon nitride,” Nature, 400, 340–342 (1999).CrossRefADSGoogle Scholar
  2. 2.
    T. Sekine and T. Mitsuhashi, “High-temperature metastability of cubic spinel Si3N4,” Appl. Phys. Lett., 79, No. 17, 2719–2721 (2001).CrossRefADSGoogle Scholar
  3. 3.
    J. Z. Jiang, H. Lindelov, L. Gerward, et al., “Compressibility and thermal expansion of cubic silicon nitride,” Phys. Rev. B, 65, 161202(4) (2002).Google Scholar
  4. 4.
    He Hongliang, T. Sekine, T. Kobayashi, and H. Hirosaki, “Shock-induced phase transition of β-Si3N4 to c-Si3N4,” Phys. Rev. B, 62, No. 17, 11412–11417 (2000).CrossRefADSGoogle Scholar
  5. 5.
    T. Sekine, He Hongliang, T. Kobayashi, Zhang Ming, and Xu Fangfanf, “Shock-induced transformation of β-Si3N4 to high-pressure cubic-spinel phase,” Appl. Phys. Lett., 76, No. 25, 3706–3708 (2000).CrossRefADSGoogle Scholar
  6. 6.
    T. Sekine, “Shock synthesis of cubic silicon nitride,” J. Amer. Ceram. Soc., 85, No. 1, 113–116 (2002).CrossRefGoogle Scholar
  7. 7.
    A. S. Yunoshev, “Shock-wave synthesis of cubic silicon nitride,” Combust., Expl., Shock Waves, 40, No. 3, 370–373 (2004).CrossRefGoogle Scholar
  8. 8.
    V. F. Tatsii, A. N. Zhukov, A. V. Anan’in, T. V. Bavina, A. N. Dremin, A. I. Rogacheva, A. V. Utkin, and V. E. Fortov, “Cubic silicon nitride: detonation synthesis and properties,” in: Shock-Assisted Synthesis and Modification of Materials [in Russian], Torus Press, Moscow (2006), pp. 125–126.Google Scholar
  9. 9.
    G. R. Crowan, B. W. Dunnington, and A. H. Holtzman, “Process for synthesizing diamond,” E. I. du Pont de Nemours and Co., Netherlands Patent Release No. 6 506 395 (1965); US Patent No. 3,401,019, September 10 (1968).Google Scholar
  10. 10.
    A. N. Dremin, “Production of high defect wurtzitelike modification of boron nitride in shock waves and its use to design a cutting tool,” in: Combustion and Explosion: Proc. of the Fourth All-Union Symposium on Combustion and Explosion (23-27 September, 1974), Nauka, Moscow (1977).Google Scholar
  11. 11.
    Topas/Topas R/Topas P Version 3.0 Technical Reference, Bruker AXS GmbH, Germany (2005).Google Scholar
  12. 12.
    R. F. Trunin, Experimental Data on Shock-Wave and Adiabatic Expansion of Condensed Materials [in Russian], Inst. of Exp. Phys., Russian Federal Nuclear Center, Sarov (2006).Google Scholar
  13. 13.
    G. K.White and S. J. Collocott, “Heat capacity of reference materials: Cu and W,” J. Phys. Chem. Ref. Data, 13, No. 4 (1984).Google Scholar
  14. 14.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Chapter X, Academic Press, New York (1967).Google Scholar
  15. 15.
    A. S. Yunoshev, “Shock-wave synthesis and investigation of the properties of cubic silicon nitride,” Candidate’s Dissertation in Phys.-Math., Lavrent’ev Inst. of Hydrodynamics, Novosibirsk 2007.Google Scholar
  16. 16.
    R. A. Andrievskii, “Silicon nitride: synthesis and properties,” Usp. Khim., 64, No. 4, 311–329 1995.Google Scholar
  17. 17.
    M. Schwarz, High Pressure Synthesis of Novel Hard Materials: Spinel-Si3N4 and Derivates, Kassel Univ. Press, GmbH, Kassel (2005).Google Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Lavrent’ev Institute of Hydrodynamics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations