Skip to main content
Log in

Syngas Oxidation Mechanism

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A comprehensive analysis of synthesis gas (syngas) oxidation kinetics in wide ranges of temperature, pressure, fuel-to-air equivalence ratio, and fuel composition is performed on the basis of the reaction mechanism of syngas ignition and combustion in air. A vast set of experimental data on the ignition delay time, laminar flame propagation velocity, and time evolution of mole fractions of the basic species, which were obtained in shock tubes and in a flow reactor, is used for verification of the kinetic model. Based on a sensitivity analysis, it is shown that the role of reactions determining the basic characteristics of ignition and combustion depends on the composition of the fuel-air mixture and the syngas proper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Wilhelm, D. R. Simbeck, A. D. Karp, and R. L. Dickenson, “Syngas production for gas-to-liquids applications: technologies, issues and outlook,” Fuel Process. Technol., 71, 139–148 (2001).

    Article  Google Scholar 

  2. M. A. Mueller, T. J. Kim, R. A. Yetter, and F. L. Dryer, “Flow reactor studies and kinetic modeling of the H2/O2 reaction,” Int. J. Chem. Kinet., 31, No. 10, 113–125 (1999).

    Article  Google Scholar 

  3. J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet., 36, 566–575 (2004).

    Article  Google Scholar 

  4. M. O’Conaire, H. J. Curran, J. M. Simmie, et al., “A comprehensive modeling study of hydrogen oxidation,” ibid. Int. J. Chem. Kinet., pp. 603–622.

  5. A. A. Konnov, “Remaining uncertainties in the kinetic mechanism of hydrogen combustion,” Combust. Flame, 152, 507–528 (2008).

    Article  Google Scholar 

  6. A. M. Starik, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov, “The promotion of ignition in a supersonic H2-air mixing layer by laser-induced excitation of O2 molecules: Numerical study,” Combust. Flame, 156, No. 8, 1641–1652 (2009).

    Article  Google Scholar 

  7. R. A. Yetter, F. L. Dryer, and H. Rabitz, “A comprehensive reaction mechanism for carbon monoxide/ hydrogen/oxygen kinetics,” Combust. Sci. Technol., 79, 97–128 (1991).

    Article  Google Scholar 

  8. P. Saxena and F. A. Williams, “Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide,” Combust. Flame, 145, 316–323 (2006).

    Article  Google Scholar 

  9. M. Chaos and F. L. Dryer, “Syngas combustion kinetics and applications,” Combust. Sci. Technol., 180, 1053–1096 (2008).

    Article  Google Scholar 

  10. G. A. Pang, D. F. Davidson, and R. K. Hanson, “Experimental study and modeling of shock tube ignition delay times for hydrogen-oxygen-argon mixtures at low temperatures,” Proc. Combust. Inst., 32, 181–188 (2009).

    Article  Google Scholar 

  11. G. Mittal, C. J. Sung, M. Fairweather, et al., “Significance of the HO2 + CO reaction during the combustion of CO + H2 mixtures at high pressures,” Proc. Combust. Inst., 31, 419–427 (2007).

    Article  Google Scholar 

  12. S. M.Walton, X. He, B. T. Zigler, and M. S.Wooldridge, “An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications,” Proc. Combust. Inst., 31, 3147–3154 (2007).

    Article  Google Scholar 

  13. F. L. Dryer and M. Chaos, “Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures: Experimental data interpretation and kinetic modeling implications,” Combust. Flame, 152, 293–299 (2007).

    Article  Google Scholar 

  14. D. Bradley, M. Lawes, K. Liu, et al., “Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa,” Combust. Flame, 149, 162–172 (2007).

    Article  Google Scholar 

  15. E. L. Petersen, D. M. Kalitan, A. B. Barrett, et al., “New syngas/air ignition data at lower temperature and elevated pressure and comparison to current kinetics models,” ibid. Combust. Flame, pp. 244–247.

  16. H. Sun, S. I. Yang, G. Jomaas, and C. K. Law, “Highpressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion,” Proc. Combust. Inst., 31, 439–446 (2007).

    Article  Google Scholar 

  17. S. G. Davis, A. V. Joshi, H. Wang, and F. Egolfopoulos, “An optimized kinetic model of H2/CO combustion,” Proc. Combust. Inst., 30, 1283–1292 (2005).

    Article  Google Scholar 

  18. J. Li, Z. Zhao, A. Kazakov, et al., “A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion,” Int. J. Chem. Kinet., 39, 109–136 (2007).

    Article  Google Scholar 

  19. A. M. Starik, B. I. Lukhovitskii, and N. S. Titova, “Mechanisms of the initiation of combustion in CH4(C2H2)/air/O3 mixtures by laser excitation of the O3 molecules,” Kinet. Katal., 48, No. 3, 348–366 (2007).

    Article  Google Scholar 

  20. J. V. Michael, J. W. Sutherland, L. B. Harding, and A. F. Wagner, “Initiation in H2/O2: Rate constants for H2 + O2 ? H + HO2 at high temperature,” Proc. Combust. Inst., 28, 1471–1478 (2000).

    Article  Google Scholar 

  21. A. N. Pirraglia, J. V. Michael, J. W. Sutherland, and R. B. Klemm, “Rate coefficient of the O+H2 = OH+H reaction determined via shock tube-laser absorption spectroscopy,” J. Phys. Chem., 93, 282 (1989).

    Article  Google Scholar 

  22. D. L. Baulch, C. T. Bowman, C. J. Cobos, et al., “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. Ref. Data, 34, No. 3, 757–1397 (2005).

    Article  ADS  Google Scholar 

  23. X. You, H. Wang, E. Goos, et al., “Reaction kinetics of CO + HO2 ? products: ab initio transition state theory study with master equation modeling,” J. Phys. Chem. A, 111, 4031–4042 (2007).

    Article  Google Scholar 

  24. L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermodynamic Properties of Individual Substances, Hemisphere Publ. Co., New York (1989).

    Google Scholar 

  25. A. Burcat and B. Ruscic, “Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables,” ANL-05/20 and TAE 960 Technion-IIT, Aerospace Engineering, and Argonne National Laboratory, Chemistry Division (2005).

  26. J. T. Herbon, R. K. Hanson, D. M. Golden, and C. T. Bowman, “A shock tube study of the enthalpy of formation of OH,” Proc. Combust. Inst., 29, 1201–1208 (2002).

    Article  Google Scholar 

  27. R. A. Yetter, F. L. Dryer, and H. Rabitz, “Flow reactor studies of carbon monoxide/hydrogen/oxygen kinetics,” Combust. Sci. Technol., 79, 129–140 (1991).

    Article  Google Scholar 

  28. R. K. Lyon, J. E. Hardy, and W. V. Holt, “Oxidation kinetics of wet CO in trace concentrations,” Combust. Flame, 61, 79–86 (1985).

    Article  Google Scholar 

  29. R. R. Craig, “A shock tube study of the ignition delay of hydrogen-air mixtures near the second explosion limit,” Report No. AFAPL-TR-66-74 (1966).

  30. A. D. Snyder, J. Robertson, D. L. Zanders, and G. B. Skinner, “Shock tube studies of fuel-air ignition characteristics,” Report No. AFAPL-TR-65-93 (1965).

  31. M. Slack and A. Grillo, “Investigation of hydrogen-air ignition sensitized by nitric oxide and nitrogen dioxide,” NASA Report No. CR-2896 (1977).

  32. E. Schultz and J. Shepherd, “Validation of Detailed Reaction mechanisms for detonation simulation,” Tech. Report No. FM 99-5: 230, Cal. Inst. of Tech. Graduate Aeronautical Lab. (2000).

  33. K. A. Bhaskaran, M. C. Gupta, and Th. Just, “Shock tube study of the effect of unsymmetric dimethyl hydrazine on the ignition characteristics of hydrogen-air mixtures,” Combust. Flame, 21, 45–48 (1973).

    Article  Google Scholar 

  34. M. W. Slack, “Rate coefficient for H + O2 +M=HO2 + M evaluated from shock tube measurements of induction times,” Combust. Flame, 28, 241–249 (1977).

    Article  Google Scholar 

  35. A. M. Dean, D. C. Steiner, and E. E. Wang, “A shock tube study of the H2/O2/CO/Ar and H2/N2O/CO/Ar systems,” Combust. Flame, 32, 73–83 (1978).

    Article  Google Scholar 

  36. W. C. Gardiner, M. McFarland, K. Morinaga, et al., “Ignition delays in H2-O2-CO-Ar mixtures,” J. Phys. Chem., 75, 1504–1509 (1971).

    Article  Google Scholar 

  37. E. L. Petersen, D. F. Davidson, M. Röhrig, and R. K. Hanson, /ldHigh-pressure shock-tube measurements of ignition times in stoichiometric H2-O2-Ar mixtures,” in: Proc. of the 20th Int. Symp. on Shock Waves, Pasadena (1995), pp. 941–946.

  38. W. T. Peschke and L. J. Spadaccini, “Determination of autoignition and flame speed characteristics of coal gases having medium heating values,” Electric Power Research Inst., Report EPRI AP-4291 (1985).

  39. M. Filatov, W. Reckien, S. D. Peyerimhoff, and S. Shaik, “What are the reasons for the kinetic stability of a mixture of H2 and O2?” J. Phys. Chem., 104, 12014–12020 (2000).

    Google Scholar 

  40. S. H. Mousavipour and V. Saheb, “Theoretical study on the kinetic mechanism of H + HO2 reaction,” Bull. Chem. Soc. Jpn., 80, No. 10, 1901–1913 (2007).

    Article  Google Scholar 

  41. S. D. Tse, D. L. Zhu, and C. K. Law, “Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres,” Proc. Combust. Inst., 28, 1793–1800 (2000).

    Article  Google Scholar 

  42. K. T. Aung, M. I. Hassan, and G. M. Faeth, “Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure,” Combust. Flame, 109, 1–24 (1997).

    Article  Google Scholar 

  43. C. K. Law, “A compilation of experimental data on laminar burning velocities,” in: N. Peters and B. Rogg (eds.), Reduced Kinetic Mechanisms for Applications in Combustion Systems, Springer-Verlag, Berlin (1993), pp. 15–26.

    Chapter  Google Scholar 

  44. T. Iijima and T. Takeno, “Effects of temperature and pressure on burning velocity,” Combust. Flame, 65, 35–43 (1986).

    Article  Google Scholar 

  45. F. Takahashi, M. Mizomoto, and S. Ikai, “Numerical studies on the structure of two-dimensional H2/air premixed jet flame,” Alternative Energy Sources III, 5, 447–457 (1983).

    Google Scholar 

  46. C. K. Wu and C. K. Law, “On the determination of laminar flame speeds from stretched flames,” in: Proc. Combust. Inst., 20, 1941–1949 (1984).

    Google Scholar 

  47. D. R. Dowdy, D. B. Smith, S. C. Taylor, and A. Williams, “The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures,” in: Proc. Combust. Inst., 23, 325–332 (1991).

    Google Scholar 

  48. J. Natarajan, T. Lieuwen, and J. Seitzman, “Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure,” Combust. Flame, 151, 104–119 (2007).

    Article  Google Scholar 

  49. M. I. Hassan, K. T. Aung, and G. M. Faeth, “Properties of laminar premixed CO/H2/Air flames at various pressures,” J. Propulsion Power, 13, No. 2, 239–245 (1997).

    Article  Google Scholar 

  50. I. C. McLean, D. B. Smith, and S. C. Taylor, “The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO + OH reaction,” in: Proc. Combust. Inst., 25, 749–757 (1994).

    Google Scholar 

  51. R. J. Kee, F. M. Rupley, J. A. Miller, et al., CHEMKIN Collection, Release 3.6, Reaction Design, Inc., San Diego, CA (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Starik.

Additional information

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 5, pp. 3–19, September–October, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starik, A.M., Titova, N.S., Sharipov, A.S. et al. Syngas Oxidation Mechanism. Combust Explos Shock Waves 46, 491–506 (2010). https://doi.org/10.1007/s10573-010-0065-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0065-x

Key words

Navigation