Skip to main content
Log in

Continuous detonation in the regime of self-oscillatory ejection of the oxidizer. 1. Oxygen as a oxidizer

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Results of an experimental study of continuous spin and pulsed detonation of hydrogen-oxygen and acetylene-oxygen mixtures in a flow-type annular combustor 10 cm in diameter with channel expansion in the regime of oxidizer ejection are presented. Through comparisons with the mechanical analogy of a piston-driven pump, it is found that the detonation wave serves as a pump for the oxidizer, and the rarefaction wave serves as a suction piston. Stable regimes of continuous spin detonation with one transverse wave are observed under the test conditions used; the wave velocity is D = 1.76–1.6 km/sec for hydrogen and D = 1.46–1.2 km/sec for acetylene. The frequency of the pulsed detonation wave is 7.3-5 kHz in the H2-O2 mixture and approximately 2.5 kHz in the C2H2-O2 mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Bykovskii and E. F. Vedernikov, “Continuous detonation of a subsonic flow of a propellant,” Combust., Expl., Shock Waves, 39, No. 3, 323–334 (2003).

    Article  Google Scholar 

  2. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Realization and modeling of continuous spin detonation of a hydrogen-oxygen mixture in flow-type combustors. 2. Combustors with expansion of the annular channel,” Combust., Expl., Shock Waves, 45, No. 6, 716–728 (2009).

    Article  Google Scholar 

  3. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous spin detonation in annular combustors,” Combust., Expl., Shock Waves, 41, No. 4, 449–459 (2005).

    Article  Google Scholar 

  4. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous spin detonation in fuel-air mixtures,” Combust., Expl., Shock Waves, 42, No. 4, 463–471 (2006).

    Article  Google Scholar 

  5. F. A. Bykovskii and V. V. Mitrofanov, “Detonation combustion of a gas mixture in a cylindrical chamber,” Combust., Expl., Shock Waves, 16, No. 5, 570–578 (1980).

    Article  Google Scholar 

  6. S. A. Zhdan, A. M. Mardashev, and V. V. Mitrofanov, “Calculation of the flow of spin detonation in an annular chamber,” Combust., Expl., Shock Waves, 26, No. 2, 210–214 (1990).

    Article  Google Scholar 

  7. S. A. Zhdan, F. A. Bykovskii, and E. F. Vedernikov, “Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture,” Combust., Expl., Shock Waves, 43, No. 4, 449–459 (2007).

    Article  Google Scholar 

  8. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous detonation in the regime of unsteady ejection of the oxidizer,” Dokl. Ross. Akad. Nauk, 424, No. 1, 40–42 (2009).

    Google Scholar 

  9. F. A. Bykovskii, “High-speed waiting photodetector,” Zh. Nauch. Prikl. Fotogr. Kinemat., No. 2, 85–89 (1981).

  10. B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Detonation Front Structure in Gases [in Russian], Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1963).

    Google Scholar 

  11. M. E. Deich, Technical Gas-Dynamics [in Russian], Énergiya, Moscow (1974).

    Google Scholar 

  12. G. N. Abramovich, Applied Gas Dynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  13. S. A. Zhdan, V. V. Mitrofanov, and A. I. Sychev, “Reactive impulse from the explosion of a gas mixture in a semiinfinite space,” Combust., Expl., Shock Waves, 30, No. 5, 657–663 (1994).

    Article  Google Scholar 

  14. F. A. Bykovskii and E. F. Vedernikov, “Continuous spin detonation of hydrogen-oxygen mixtures. 3. Methods of measuring flow parameters and flow structure in combustors of different geometries,” Combust., Expl., Shock Waves, 44, No. 4, 451–460 (2008).

    Article  Google Scholar 

  15. F. A. Bykovskii and E. F. Vedernikov, “Discharge coefficients of nozzles and of their combinations in forward and reverse flow,” J. Appl. Mech. Tech. Phys., 37, No. 4, 541–546 (1996).

    Article  ADS  Google Scholar 

  16. B. Lewis and G. von Elbe, Combustion, Flame, and Explosions of Gases, New York (1961).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Bykovskii.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 3, pp. 116–124, May–June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykovskii, F.A., Zhdan, S.A. & Vedernikov, E.F. Continuous detonation in the regime of self-oscillatory ejection of the oxidizer. 1. Oxygen as a oxidizer. Combust Explos Shock Waves 46, 344–351 (2010). https://doi.org/10.1007/s10573-010-0047-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0047-z

Key words

Navigation