Skip to main content
Log in

Experimental study of the structure of a lean premixed indane/CH4/O2/Ar flame

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

In order to better understand the chemistry involved during the combustion of diesel fuel components, the structure of a laminar lean premixed methane flame doped with indane has been investigated. This flame contains 7.1% (molar) of methane, 36.8% of oxygen, and 0.90% of indane, corresponding to an equivalence ratio of 0.74 and a C9H10/CH4 ratio of 12.75%, with argon used as a dilutant. The flame has been stabilized on a burner at a pressure of 6.7 kPa, with the gas velocity at the burner exit equal to 49.2 cm/sec at 333 K. Quantified species include usual methane combustion products C0–C2, but also eleven C3–C5 hydrocarbons and three C1–C3 oxygenated compounds, as well as 17 aromatic products, namely benzene, toluene, phenylacetylene, styrene, ethylbenzene, xylenes, trimethylbenzenes, ethyltoluenes, indene, methylindane, methylindene, naphthalene, phenol, benzaldehyde, and benzofuran. The temperature has been measured by a PtRh(6%)-PtRh(30%) thermocouple settled inside the enclosure: from 800 K close to the burner up to 2000 K in the burned gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Guibet, Fuels and Engines, Publications de l’Institut Français du Pétrole, Editions Technip, Paris (1999).

    Google Scholar 

  2. F. Battin-Leclerc, “Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates,” Prog. Energ. Combust. Sci., 63, No. 4, 440–498 (2008).

    Article  Google Scholar 

  3. T. A. Litzinger, K. Brezinsky, and I. Glassman, “The oxidation of ethylbenzene near 1060 K,” Combust. Flame, 63, 251–267 (1986).

    Article  Google Scholar 

  4. T. A. Litzinger, K. Brezinsky, and I. Glassman, “Reactions of n-propylbenzene during gas phase oxidation,” Combust. Sci. Techol., 50, 117–133 (1986).

    Article  Google Scholar 

  5. T. A. Litzinger, K. Brezinsky, and I. Glassman, “Gas-phase oxidation of isopropylbenzene at high temperature,” J. Phys. Chem., 90, 508–513 (1986).

    Article  Google Scholar 

  6. P. Dagaut, A. Ristori, A. El Bakali, and M. Cathonnet, “Experimental and kinetic modeling study of the oxidation of n-propylbenzene,” Fuel, 81, 173–184 (2002).

    Article  Google Scholar 

  7. A. Roubaud, R. Minetti, and L. R. Sochet, “Oxidation and combustion of low alkylbenzenes at high pressure: comparative reactivity and auto-ignition,” Combust. Flame, 121, 535–541 (2000).

    Article  Google Scholar 

  8. A. Roubaud, O. Lemaire, R. Minetti, and L. R. Sochet, “High pressure auto-ignition and oxidation mechanism of o-xylene, o-ethytoluene, and n-butylbenzene between 600 and 900 K,” Combust. Flame, 123, 561–571 (2000).

    Article  Google Scholar 

  9. P. Dagaut, A. Ristori, G. Pengloan, and M. Cathonnet, “Kinetic effect of dimethoxymethane on the oxidation of indane,” Energ. Fuels, 15, 372–376 (2001).

    Article  Google Scholar 

  10. F. Buda, R. Bounaceur, V. Warth, P. A. Glaude, R. Fournet, and F. Battin-Leclerc, “Progress toward a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K,” Combust. Flame, 142, 170–186 (2005).

    Article  Google Scholar 

  11. I. Da Costa, R. Fournet, F. Billaud, and F. Battin-Leclerc, “Experimental and modelling study of the oxidation of benzene,” Int. J. Chem. Kin, 35, 503–524 (2003).

    Article  Google Scholar 

  12. R. Bounaceur, I. Da Costa, R. Fournet, F. Billaud, and F. Battin-Leclerc, “Experimental and modeling study of the oxidation of toluene,” Int. J. Chem. Kin., 37, 25–49 (2005).

    Article  Google Scholar 

  13. H. A. Gueniche, P. A. Glaude, G. Dayma, R. Fournet, and F. Battin-Leclerc, “Rich methane premixed laminar flames doped with light unsaturated hydrocarbons. Pt I: Allene and propyne,” Combust. Flame, 146, 620–634 (2006).

    Article  Google Scholar 

  14. H. A. Gueniche, P. A. Glaude, R. Fournet, and F. Battin-Leclerc, “Rich methane premixed laminar flames doped by light unsaturated hydrocarbons. Part II: 1,3-butadiene,” Combust. Flame, 151, 245–261 (2007).

    Article  Google Scholar 

  15. H. A. Gueniche, P. A. Glaude, R. Fournet, and F. Battin-Leclerc, “Rich methane premixed laminar flames doped by light unsaturated hydrocarbons. Part III: Cyclopentene,” Combust. Flame, 152, 245–261 (2008).

    Article  Google Scholar 

  16. J. H. Kent, “A noncatalytic coating for platinum-rhodium thermocouples,” Combust. Flame, 14, 279–282 (1970).

    Article  Google Scholar 

  17. U. Bonne, T. Grewer, and H. W. Wagner, “Messungen in der Reaktionszone von Wasserstoff-Sauerstoff- und Methan-Sauerstoff-Flammen,” Z. Phys. Chem., 26, S. 93–110 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pousse.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 2, pp. 17–25, March–April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pousse, E., Glaude, P.A., Fournet, R. et al. Experimental study of the structure of a lean premixed indane/CH4/O2/Ar flame. Combust Explos Shock Waves 46, 132–139 (2010). https://doi.org/10.1007/s10573-010-0021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0021-9

Key words

Navigation