Skip to main content
Log in

Diffraction of a plane detonation wave on a back-facing step in a gas suspension

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The process of diffraction of a plane detonation wave in a uniform stoichiometric suspension of small aluminum particles in oxygen on a backward-facing step in a plane channel is studied. The effect of the particle size and channel geometry on the wave pattern and wave-propagation regimes is analyzed. Analogies with the corresponding flows in gas mixtures are established. Typical differences caused by the processes of interaction between the phases are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Roy, S. M. Frolov., A. A. Borisov, and D. W. Netzer, “Pulse detonation propulsion: challenges, current status, and future perspective,” Prog. Energ. Combust. Sci., 30, 545–672 (2004).

    Article  Google Scholar 

  2. J. E. Shepherd, E. Schultz, and R. Akbar, “Detonation diffraction,” in: G. Ball, R. Hillier, and G. Roberts (eds.), Proc. 22nd Int. Symp. on Shock Waves, Vol. 1 (2000), pp. 41–48.

  3. E.G. Pantow, M. Fischer, and Th. Kratzel, “Decoupling and recoupling of detonation waves associated with sudden expansion,” Shock Waves, 6, 131–137 (1996).

    Article  ADS  Google Scholar 

  4. M. Arienti and J. E. Shepherd, “A numerical study of detonation diffraction,” J. Fluid Mech., 529, 117–146 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, “Initiation and propagation of detonation in channels of complex shape,” in: G. Roy and S. Frolov (eds.), Pulse and Continuous Detonation Propulsion, Torus, Moscow (2006), pp. 97–106.

    Google Scholar 

  6. A. V. Fedorov, Yu. V. Kratova, and T. A. Khmel’, “Numerical study of shock-wave diffraction in variable-section channels in gas suspensions,” Combust., Expl., Shock Waves, 44, No. 1, 76–85 (2008).

    Article  Google Scholar 

  7. A. G. Kutushev and L. V. Shorokhova, “Numerical study of combustion and detonation of air suspensions of a unitary fuel in suddenly expanding tubes,” Khim. Fiz., 22, No. 8, 94–99 (2003).

    Google Scholar 

  8. A. K. Kapila, D. W. Schwendeman, J. B. Bdzil, and W. D. Henshaw, “A study of detonation diffraction in the ignition-and-growth model,” Combust. Theory Model., No. 11, 781–822 (2007).

  9. A. V. Fedorov and T. A. Khmel’, “Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen,” Combust., Expl., Shock Waves, 41, No. 4, 435–448 (2005).

    Article  Google Scholar 

  10. T. A. Khmel’ and A. V. Fedorov, “Numerical simulation of detonation initiation with a shock wave entering a cloud of aluminum particles,” Combust., Expl., Shock Waves, 38, No. 1, 101–108 (2002).

    Article  Google Scholar 

  11. V. M. Boiko, V. P. Kiselev, S. P. Kiselev, A. N. Papyrin, S. V. Poplavskii, and V. M. Fomin, “Interaction of a shock wave with a cloud of particles,” Combust., Expl., Shock Waves, 32, No. 2, 191–203 (1996).

    Article  Google Scholar 

  12. A. V. Fedorov, “Structure of heterogeneous detonation of aluminum particles dispersed in oxygen,” Combust., Expl., Shock Waves, 28, No. 3, 277–286 (1992).

    Article  Google Scholar 

  13. A. V. Fedorov, V. M. Fomin, and T. A. Khmel’, “Nonequilibrium model of steady detonations in aluminum particle-oxygen suspensions,” Shock Waves, 9, No. 5, 313–318 (1999).

    Article  MATH  ADS  Google Scholar 

  14. T. A. Khmel’ and A. V. Fedorov, “Interaction of a shock wave with a cloud of aluminum particles in a channel,” Combust., Expl., Shock Waves, 38, No. 2, 206–214 (2002).

    Article  Google Scholar 

  15. Ya. B. Zel’dovich, S. M. Kogarko, and N. N. Simonov, “Experimental study of spherical gas detonation,” Zh. Tekh. Fiz., 26, No. 8, 1744–1769 (1956).

    Google Scholar 

  16. R. Hillier, “Computation of shock wave diffraction at a ninety degrees convex edge,” Shock Waves, 1, 89–98 (1991).

    Article  MATH  ADS  Google Scholar 

  17. H. O. Barthel, “Predicted spacings in hydrogen-oxygenargon detonations,” Phys. Fluids, 17, No. 8, 1547–1553 (1974).

    Article  ADS  Google Scholar 

  18. A. V. Fedorov and T. A. Khmel’, “Formation and degeneration of cellular detonation in bidisperse gas suspensions of aluminum particles,” Combust., Expl., Shock Waves, 44, No. 3, 343–353 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kratova.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 5, pp. 95–107, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kratova, Y.V., Fedorov, A.V. & Khmel’, T.A. Diffraction of a plane detonation wave on a back-facing step in a gas suspension. Combust Explos Shock Waves 45, 591–602 (2009). https://doi.org/10.1007/s10573-009-0071-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0071-z

Key words

Navigation