Skip to main content
Log in

Studying RDX and HMX combustion mechanisms by various experimental techniques

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Application of a microthermocouple technique is justified; results on physics of combustion of condensed explosives, in particular, RDX and HMX, obtained by this technique are briefly described. The possibilities of mass-spectrometer (including gas sampling) and optical techniques of studying the chemistry of gas-phase processes in the combustion wave are analyzed with RDX and HMX used as examples. The measured results are briefly discussed. Constrains of the techniques are indicated. A method of refining the chemistry of combustion-wave processes is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Klein et al., “Determination of the thermal structures of a combustion wave by fine thermocouples,” J. Phys. Colloid Chem., 54, No. 6, 877–884 (1950).

    Article  Google Scholar 

  2. C. A. Heller and A. S. Gordon, “Structure of the gas phase region of a solid double base propellant,” J. Phys. Chem., 59, No. 8, 773–777 (1955).

    Article  Google Scholar 

  3. N. P. Suh, C. L. Tsai, C. L. Thompson (Jr.), and J. S. Moore, “Ignition and surface temperatures of double base propellants at low pressure: thermocouple measurements,” AIAA J., No. 7, 1314–1321 (1970).

    Google Scholar 

  4. C. L. Thompson (Jr.) and N. P. Suh, “Gas phase reactions near the solid-gas interface of a deflagrating double-base propellant strand,” AIAA J., No. 1, 154–159 (1971).

  5. A. A. Zenin, “Experimental study of the solid propellant combustion mechanism and the flow of combustion products,” Doct. Dissertation in Phys.-Math. Sci., Moscow (1976).

    Google Scholar 

  6. S. V. Finjakov, “Study of the mechanism of powder combustion with a flow past the burning surface,” Candidate’s Dissertation in Phys.-Math. Sci., Moscow (1992).

    Google Scholar 

  7. A. A. Zenin, V. M. Puchkov, and S. V. Finjakov, “Characteristics of HMX combustion waves at various pressures and initial temperatures,” Combust., Expl., Shock Waves, 34, No. 2, 170–176 (1998).

    Article  Google Scholar 

  8. A. A. Zenin and S. V. Finjakov, “Characteristics of octogen and hexogen combustion: A comparison,” in: Energetic Materials, Proc. 37th Int. Annu. Conf. of ICT, Karlsruhe, FRG (2006), pp. 154(1)–154(18).

  9. A. A. Zenin and S. V. Finjakov, “Characteristics of RDX combustion zones at different pressures,” Combust., Expl., Shock Waves, 42, No. 5, 521–533 (2006).

    Article  Google Scholar 

  10. A. V. Lykov, Theory of Thermal Conductivity [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  11. M. A. Mikheev and I. M. Mikheeva, Fundamentals of Heat Transfer [in Russian], Énergiya, Moscow (1973).

    Google Scholar 

  12. N. V. Tsedenberg, Thermal Conductivity of Gases and Liquids [in Russian], Gosénergoizdat, Moscow-Leningrad (1963).

    Google Scholar 

  13. M. W. Beckstead, “Condensed-phase control? Or gasphase control?” Combust., Expl., Shock Waves, 43, No. 2, 243–245 (2007).

    Article  Google Scholar 

  14. A. A. Zenin, “Processes in combustion zones of ballistite powders,” in: Physical Processes in Combustion and Explosion [in Russian], Atomizdat, Moscow (1980), pp. 68–104.

    Google Scholar 

  15. A. A. Zenin, “Thermophysics of stable combustion waves of solid propellants,” in: L. DeLuca, E. W. Price, and M. Summerfield (eds.), Progress in Astronautics and Aeronautics, Vol. 143: Nonsteady Burning and Combustion Stability of Solid Propellants, Chapter 6, AIAA, Washington (1992), pp. 197–231.

    Google Scholar 

  16. A. A. Zenin, A. P. Glazkova, O. I. Leipunskii, and V. K. Bobolev, “Measurement of flame radiation by microcalorimeters,” Fiz. Goreniya Vzryva, 4, No. 2, 196–202 (1968).

    Google Scholar 

  17. A. A. Zenin et al., “Role of radiation in combustion of metallized mixtures,” Dokl. Akad. Nauk SSSR, 181, No. 3, 637–639 (1968).

    Google Scholar 

  18. N. E. Karasev, Probability Theory and Mathematical Statistics [in Russian], Statistika, Moscow (1979), pp. 226–246.

    Google Scholar 

  19. V. E. Gmurman, Probability Theory and Mathematical Statistics [in Russian], Vysshaya Shkola, Moscow (1999), pp. 267–278.

    Google Scholar 

  20. A. A. Zenin, “Comment to M. W. Beckstead’s paper ‘Recent progress in modeling solid propellant combustion’,” Combust., Expl., Shock Waves, 43, No. 2, 241–242 (2007).

    Article  Google Scholar 

  21. A. A. Zenin and S. V. Finjakov, “Physics of combustion of ballistite powders in a flow of combustion products,” Report of Inst. Chem. Phys., Acad. of Sci. of the USSR, Moscow (1988).

    Google Scholar 

  22. A. A. Zenin and S. V. Finjakov, “Response functions of HMX and RDX burning rates with allowance for melting,” Combust., Expl., Shock Waves, 43, No. 3, 309–319 (2007).

    Article  Google Scholar 

  23. O. P. Korobeinichev, A. A. Paletsky, and E. N. Volkov, “Flame structures and chemistry of combustion of energetic materials,” Khim. Fiz., 27, No. 4, 34–59 (2008).

    Google Scholar 

  24. E. N. Volkov, A. A. Paletsky, and O. P. Korobeinichev, “RDX flame structure at atmospheric pressure,” Combust., Expl., Shock Waves, 44, No. 1, 43–54 (2008).

    Article  Google Scholar 

  25. A. A. Paletsky, E. N. Volkov, and O. P. Korobeinichev, “HMX flame structure for combustion in air at a pressure of 1 atm,” Combust., Expl., Shock Waves, 44, No. 6, 639–654 (2008).

    Article  Google Scholar 

  26. L. V. Kuibida, “Studying the nitramine flame structure by the method of probing mass spectrometer with a molecular beam,” Candidate’s Dissertation in Phys.- Math. Sci., Inst. Chem. Kinetics and Combustion, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1988).

    Google Scholar 

  27. T. A. Litzinger, Y. J. Lee, and C.-J. Tang, “A study of solid propellant combustion using a triple quadruple mass spectrometer with microprobe sampling,” in: Proc. of the Workshop on the Application of Free-Jet, Molecular Beam, Mass Spectrometric Sampling, National Technical Information Service, U. S. Dept. of Commerce, Springfield, VA (1994), pp. 128–135.

    Google Scholar 

  28. Y. J. Lee, C. -J. Tang, G. K. Kudva, and T. A. Litzinger, “Triple quadruple mass spectrometer system for studies of gas-phase combustion chemistry of energetic materials,” Measur. Sci. Technol., 9, No. 9, 1576–1586 (1998).

    Article  ADS  Google Scholar 

  29. Y. J. Lee, C.-J. Tang, and T. A. Litzinger, “A study of the chemical and physical processes governing the during CO2 laser-assisted pyrolysis and combustion of RDX,” Combust. Flame, 117, No. 3, 600–628 (1999).

    Article  Google Scholar 

  30. Tang C.-J., Lee Y. J., Kudva G. K., Litzinger T. A. “A study of the gas-phase chemical structure of HMX during CO2 laser-assisted combustion,” Combust. Flame, 117, No. 1, 170–188 (1999).

    Article  Google Scholar 

  31. T. A. Litzinger, Y. J. Lee, and C.-J. Tang, “Experimental studies of nitramine/azide propellant combustion,” in: V. Yang, T. B. Brill, and W. Z. Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Chapter 2.4, Reston (2000), pp. 355–379.

  32. V. V. Dubinin, B. Ya. Kolesnikov, and G. I. Ksandopulo, “Correctness of probe withdrawal of samples in flames,” Combust., Expl., Shock Waves, 13, No. 6, 785–788 (1977).

    Article  Google Scholar 

  33. R. M. Fristrom and A. A. Westenberg, Flame Structure, McGraw-Hill, New York (1965).

    Google Scholar 

  34. T. Parr and D. M. Hanson-Parr, “Nonintrusive diagnostic techniques for research on nonsteady burning of solid propellants,” in: L. De Luca, E. W. Price, and M. Summerfield (eds.), Progress in Astronautics and Aeronautics, Vol. 143: Nonsteady Burning and Combustion Stability of Solid Propellants, Chapter 8, AIAA, Washington (1992), pp. 261–324.

    Google Scholar 

  35. J. A. Vanderhoff, M. W. Teague, and A. J. Kotlar, “Absorption spectroscopy through the dark zone of solid propellant flame,” Report No. BRL.-TR-3334, U. S. Army Ballistic Research Lab., Aberdeen Proving Ground (1992).

  36. Edwards et al., “Investigation of high pressure solid propellant combustion chemistry using emission spectroscopy,” J. Propuls., 2, 228–262 (1986).

    Article  Google Scholar 

  37. Edwards et al., “Laser-induced fluorescence of CN in solid propellant flames,” Paper No. 86-18, The Combustion Inst., Pittsburgh (1986).

    Google Scholar 

  38. R. J. Hall and A. C. Eckbreth, “Combustion diagnostic by coherent anti-stokes raman spectroscopy (CARS),” Opt. Eng., 20, 294–535 (1981).

    Google Scholar 

  39. T. Parr and D. M. Hanson-Parr, “Solid propellant flame structure,” in: K. K. Kuo and T. Parr (eds.), Non-Intrusive Combustion Diagnostics, Beggel House, New York (1994), pp. 571–599.

    Google Scholar 

  40. D. Hanson-Parr and T. Parr, “RDX laser assisted flame structure,” in: Proc. 31st JANNAF Combustion Subcommittee Meeting, CPIA Publ. No. 620, Vol. II (1994), pp. 407–423.

    Google Scholar 

  41. D. Hanson-Parr and T. Parr, “RDX, HMX, and XM39 self-deflagration flame structure,” in: Proc. 32st JANNAF Combustion Subcommittee Meeting, CPIA Publ. No. 631, Vol. I (1994), pp. 429–437.

    Google Scholar 

  42. S. H. Modiano and J. A. Vanderhoff, “Propellant dark zone concentration via multichannel IR absorption,” in: Proc. 26th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1996), pp. 2017–2023.

    Google Scholar 

  43. T. P. Parr and D. M. Hanson-Parr, “Solid propellant diffusion flame structure,” ibid., pp. 1981–1987.

    Google Scholar 

  44. T. Parr and D. Hanson-Parr, “Optical diagnostics of solid-propellant flame structures,” in: V. Yang, T. B. Brill, and W. Z. Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Chapter 2.5, AIAA (2000), pp. 381–411.

  45. T. L. Boggs, “The thermal behavior of cyclotrimethylenetrinitramine (RDX) and cyclotetramethylenetetranitramine (HMX),” in: K. K. Kuo and M. Summerfield (eds.), Progress in Astronautics and Aeronautics, Vol. 90: Fundamentals of Solid-Propellant Combustion, Academic Press, New York (1984), pp. 121–175.

    Google Scholar 

  46. N. E. Ermolin and V. E. Zarko, “Investigation of the properties of a kinetic mechanism describing the chemical structure of RDX flames. I. Role of Individual Reactions and Species,” Combust., Expl., Shock Waves, 37, No. 2, 123–147 (2001).

    Article  Google Scholar 

  47. N. E. Ermolin and V. E. Zarko, “Investigation of the properties of a kinetic mechanism describing the chemical structure of rdx flames. II. Construction of a reduced kinetic scheme,” Combust., Expl., Shock Waves, 37, No. 3, 247–254 (2001).

    Article  Google Scholar 

  48. M. S. Miller and W. R. Anderson, “Energetic-material combustion modeling with elementary gas-phase reactions: A practical approach,” in: V. Yang, T. B. Brill, and W. Zh. Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Chapter 2.12, AIAA, Reston (2000), pp. 501–531.

    Google Scholar 

  49. Y. C. Liau and V. Yang, Analysis of RDX monopropellant combustion with two-phase subsurface reactions,” J. Propuls. Power, 11, No. 4, 729–739 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zenin.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 5, pp. 60–81, September–October, 2009. Original article submitted September 14, 2007; revision submitted March 27, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenin, A.A., Finjakov, S.V. Studying RDX and HMX combustion mechanisms by various experimental techniques. Combust Explos Shock Waves 45, 559–578 (2009). https://doi.org/10.1007/s10573-009-0068-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0068-7

Key words

Navigation