Skip to main content
Log in

Numerical solution of the problem of ignition of a combustible liquid by a single hot particle

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The problem of ignition of a typical combustible liquid by a single metal particle heated to high temperatures is solved numerically using a gas-phase model of ignition taking into account thermal conductivity, liquid vaporization, diffusion and convection of fuel vapor in air, crystallization of the particle, formation of a vapor gap between the particle and liquid, temperature dependence of the thermal characteristics of interacting substances, and air humidity. The scales of the effects of the initial temperature and particle size and shape on the delay of the examined process are determined. The limiting values for ignition initiation are found for the characteristic parameters of the ignition source (initial temperature and size) and air humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Blinov and G. N. Khudyakov, Diffusion Combustion of Liquids [in Russian], Izd. Akad. Nauk SSSR (1961).

  2. N. S. Khabeev and O. R. Ganiev, “Dynamics of a vapor shell around a heated particle in a liquid,” Appl. Mech. Tech. Phys., 48, No. 4, 525–533 (2007).

    Article  ADS  Google Scholar 

  3. K. A. Avdeev, F. S. Frolov, and S. M. Frolov, Nonstationary heat exchange of metal particles with gas,” Khim. Fiz., 25, No. 11, 17–24 (2006).

    Google Scholar 

  4. I. G. Namyatov, S. S. Minaev, V. S. Babkin, V. A. Bunev, and A. A. Korzhavin, “Diffusion combustion of a liquid fuel film on a metal substrate,” Combust., Expl., Shock Waves, 36, No. 5, 562–570 (2000).

    Article  Google Scholar 

  5. E. I. Gubin and I. G. Dik, “Spark ignition of atomized liquid fuel,” Combust., Expl., Shock Waves, 26, No. 1, 8–11 (1990).

    Article  Google Scholar 

  6. G. V. Kuznetsov and P. A. Strizhak, “Heat and mass transfer at the ignition of a liquid substance by a single hot particle,” J. Eng. Thermophys., No. 3, 244–252 (2008).

    Google Scholar 

  7. P. Dagaut and M. Cathonnet, “The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling,” Prog. Energ. Combust. Sci., No. 32, 48–92 (2006).

    Google Scholar 

  8. F. A. Williams, Combustion Theory [in Russian], Addison-Wesley Pub., Reading (1985).

    Google Scholar 

  9. V. N. Vilyunov and V. E. Zarko, Ignition of Solids, Elsevier, Amsterdam (1989).

    Google Scholar 

  10. R. F. McAlevy, P. L. Cowan, and M. Summerfield, “The mechanism of ignition composite solid propellants by hot gases,” in: M. Summerfield (ed.), Progress in Astronautics and Rocketry, Vol. 1: Solid Propellant Rocket Research, Academic Press, New York (1960).

    Google Scholar 

  11. P. J. Roach, Computational Fluid Dynamics, Hermosa, Albuquerque (1976).

    Google Scholar 

  12. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum, New York (1969).

    Google Scholar 

  13. Yu. V. Polezhaev and F. B. Yur’evich, Thermal Protection [in Russian], Énergiya, Moscow (1976).

    Google Scholar 

  14. V. P. Isachenko, Heat Exchange during Condensation [in Russian], Énergiya, Moscow (1977).

    Google Scholar 

  15. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  16. L. A. Kozdoba, Methods of Solution of Nonlinear Heat-Conduction Problems [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  17. G. V. Kuznetsov and P. A. Strizhak, “Ignition of liquid hydrocarbon fuels by a heated single particle,” Izv. Tomsk Politekh. Unhiv., No. 4, 5–9 (2008).

  18. E. S. Shchetinkov, Physics of Gas Combustion [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  19. N. B. Vargaftik, Handbook on Thermophysical Properties of Gases and Liquids [in Russian], Stars, Moscow (2006).

    Google Scholar 

  20. V. N. Yureneva and P. D. Lebedeva, Heat Engineering Handbook [in Russian], Vol. 1, Énergiya, Moscow (1975).

    Google Scholar 

  21. V. N. Yureneva and P. D. Lebedeva, Heat Engineering Handbook [in Russian], Vol. 2, Énergiya, Moscow (1975).

    Google Scholar 

  22. G. V. Taratushkina, “Heat and mass transfer during ignition of condensed substances and erosion of structural materials during inertial sedimentation of hot solid particles,” Candidate Dissertation in Phys.-Math. Sci., Tomsk (2004).

  23. A. V. Lykov and Yu. A. Mikhailov, Theory of Heat and Mass Transfer [in Russian], Gosénergoizdat, Leningrad (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Strizhak.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 5, pp. 42–50, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, G.V., Strizhak, P.A. Numerical solution of the problem of ignition of a combustible liquid by a single hot particle. Combust Explos Shock Waves 45, 543–550 (2009). https://doi.org/10.1007/s10573-009-0066-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0066-9

Key words

Navigation