Skip to main content
Log in

Effect of gas pressure on the laws of propagation of spinning waves during filtration combustion

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A three-dimensional mathematical model of filtration combustion with the combustion front propagating over a cylindrical specimen pressed from a powdered solid reagent and placed into an oxidizing medium is considered. Characteristics of spinning waves are studied for different pressures of the ambient gas. Steady waves of surface combustion are demonstrated to propagate over the specimen at low ambient pressures. For spinning waves formed at higher pressures, the characteristics may change nonmonotonically with increasing pressure, and the point with the maximum temperature may be located in the depth of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Merzhanov, I. P. Borovinskaya, and Yu. E. Volodin, “Mechanism of combustion of porous metallic samples in nitrogen,” Dokl. Akad. Nauk SSSR, 206, No. 4, 905–908 (1972).

    Google Scholar 

  2. T. P. Ivleva, A. G. Merzhanov, and K. G. Shkadinskii, “Surface combustion of porous condensed substances with condensed products,” in: Chemical Physics of Combustion and Explosion Processes. Combustion of Condensed and Heterogeneous Systems (collected scientific papers) [in Russian], Chernogolovka (1980), pp. 63–67.

  3. V. V. Grachev and T. P. Ivleva, “Two-dimensional modes of filtration combustion,” Combust., Expl., Shock Waves, 35, No. 2, 126–132 (1999).

    Article  Google Scholar 

  4. A. G. Merzhanov, A. K. Filonenko, and I. P. Borovinskaya, “New phenomena in combustion of condensed systems,” Proc. Acad. Sci. USSR, Phys. Chem. Sec., 208, 122–125 (1973).

    Google Scholar 

  5. A. K. Filonenko and V. I. Vershinnikov, “Mechanism of spin burning of titanium in nitrogen,” Combust., Expl., Shock Waves, 11, No. 3, 301–308 (1975).

    Article  Google Scholar 

  6. A. K. Filonenko and V. V. Barzykin, “The effect of density on the limits and regularities of spin combustion of titanium in nitrogen,” Combust., Expl., Shock Waves, 32, No. 1, 45–49 (1996).

    Article  Google Scholar 

  7. A. K. Filonenko, “Some characteristics of a spin combustion site and of the processes occurring in it,” Combust., Expl., Shock Waves, 34, No. 3, 288–291 (1998).

    Article  Google Scholar 

  8. A. Mukasyan, J. A. Marasia, I. A. Filimonov, and A. Varma, “Role of infiltration in spin combustion in gas-solid systems,” Combust. Flame, 122, 368–374 (2000).

    Article  Google Scholar 

  9. Yu. M. Maksimov, A. T. Pak, G. V. Lavrenchuk, et al., “Spin combustion of gasless systems,” Combust., Expl., Shock Waves, 15, No. 3, 415–417 (1979).

    Article  Google Scholar 

  10. Yu. M. Maksimov, A. G. Merzhanov, A. T. Pak, and M. N. Kuchkin, “Unstable combustion modes of gasless systems,” Combust., Expl., Shock Waves, 17, No. 4, 393–399 (1981).

    Article  Google Scholar 

  11. T. P. Ivleva and A. G. Merzhanov, “Mathematical simulation of three-dimensional spinning modes of gasless combustion waves,” Dokl. Phys., 44, No. 11, 739–744 (1999).

    MATH  ADS  Google Scholar 

  12. T. P. Ivleva and A. G. Merzhanov, “Structure and variability of spinning reaction waves in three-dimensional excitable media,” Phys. Rev. E, 64, No. 3, 036218 (2001).

    Article  ADS  Google Scholar 

  13. T. P. Ivleva and A. G. Merzhanov, “Three-dimensional modes of unsteady solid-flame combustion,” Chaos, 13, No. 1, 80–85 (2003).

    Article  ADS  Google Scholar 

  14. A. P. Aldushin, T. P. Ivleva, A. G. Merzhanov, et al., “Propagation of the combustion front in porous metallic samples with oxidizer filtration,” in: A. G. Merzhanov (ed.), Processes of Combustion in Chemical Technology and Metallurgy [in Russian], Chernogolovka (1975), pp. 245–252.

  15. A. P. Aldushin, A. G. Merzhanov, and B. S. Seplyarskii, “Theory of filtration combustion of metals,” Combust., Expl., Shock Waves, 12, No. 3, 285–293 (1976).

    Article  Google Scholar 

  16. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum, New York (1969).

    Google Scholar 

  17. T. P. Ivleva and K. G. Shkadinskii, “Algorithm for constructing a moving nonuniform adaptive computational grid,“ Informational Bulletin of the State Database for Algorithms and Codes of the USSR, No. 1(27), 18–19 (1979).

  18. T. P. Ivleva and A. G. Merzhanov, “Modeling of three-dimensional non-adiabatic regimes of unstable solidstate combustion,” Dokl. Ross. Akad. Nauk, 386, No. 2, 215–219 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Ivleva.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 5, pp. 33–41, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivleva, T.P., Merzhanov, A.G. Effect of gas pressure on the laws of propagation of spinning waves during filtration combustion. Combust Explos Shock Waves 45, 534–542 (2009). https://doi.org/10.1007/s10573-009-0065-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0065-x

Key words

Navigation