Skip to main content
Log in

Hydrodynamic instability of inward-propagating flames

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The influence of hydrodynamic instability on the propagation velocity and distortion of an inward-propagating cylindrical flame is investigated theoretically and numerically. Theoretical investigations are conducted within the framework of a nonlinear model based on an evolution equation for the perturbed flame front, which may be derived from the general model, similar to the Sivashinsky equation. The phenomenon of surface distortion of an inward-propagating flame, leading to a decrease in the burning time, is studied both by analyzing the exact solutions of the nonlinear evolution equation and by numerical simulations of the general hydrodynamic model. Physical processes determining the inward-propagating flame dynamics are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wu and J. M. Driscoll, “A numerical simulation of a vortex convected through a laminar premixed flame,” Combust. Flame, 91, 310–332 (1991).

    Article  Google Scholar 

  2. W. T. Ashrust, “Flame propagation through swirling eddies, a recursive pattern,” Combust. Sci. Technol., 92, 87–103 (1993).

    Article  Google Scholar 

  3. J. Zhu and P. D. Ronney, “Simulation of front propagation at large non-dimensional flow disturbance intensities,” Combust. Sci. Technol., 100, 183–201 (1994).

    Article  Google Scholar 

  4. T. Poinsot, D. Veynante, and S. Candel, “Diagrams of premixed turbulent combustion based on direct simulation,” in: Proc. Combustion Inst., 23, 613–619 (1990).

    Article  Google Scholar 

  5. W. L. Roberts, J. F. Driscoll, M. C. Drake, and J. W. Ratcliffe, “OH fluorescence images of the quenching of a premixed flame during an interaction with a vortex,” in: Proc. Combustion Inst., 24, 169–176 (1992).

    Article  Google Scholar 

  6. C. J. Mueller, J. F. Driscoll, D. L. Reuss, M. C. Drake, and M. E. Rosalik, “Vorticity generation and attenuation as vortices convect through a premixed flame,” Combust. Flame, 112, 342–358 (1998).

    Article  Google Scholar 

  7. G. G. Lee, K. Y. Huh, and H. Kobayashi, “Measurement and analysis of flame surface density for turbulent premixed combustion on a nozzle-type burner,” Combust. Flame, 122, 43–57 (2000).

    Article  Google Scholar 

  8. V. S. Babkin, I. L. Kuznetsov, and L. S. Kozachenko, “Effect of curvature on the laminar flame propagation velocity in a lean propane-air mixture,” Dokl. Akad. Nauk SSSR, 146, No. 3, 625–627 (1962).

    Google Scholar 

  9. G. Sivashinsky, “Some developments in premixed combustion modeling,” in: Proc. Combustion Inst., 29, 1737–1761 (2002).

    Article  MathSciNet  Google Scholar 

  10. S. J. Sun and C. K. Law, “On the consumption of fuel pockets via inwardly propagating flames,” in: Proc. Combustion Inst., 27, 963–970 (1998).

    Article  Google Scholar 

  11. L. Kagan and G. Sivashinsky, “Incomplete combustion in nonadiabatic premixed gas flames,” Phys. Rev. E, 53, 6021–6027 (1996).

    Article  ADS  Google Scholar 

  12. C. J. Sun, C. J. Sung, L. He, and C. K. Law, “Stretch effects in counterflow and propagating spherical flames,” AIAA Paper No. 97-0901 (1997).

  13. M. L. Frankel and G. I. Sivashinsky, “On quenching of curved flames,” Combust. Sci. Technol., 40, 257–268 (1984).

    Article  Google Scholar 

  14. G. Sivashinsky, “Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations,” Acta Astronaut., 4, 1177–1206 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Filyand, G. I. Sivahshinsky, and M. L. Frankel, “On self-acceleration of outward propagating wrinkled flames,” Physica D, 72, 110–118 (1994).

    Article  MATH  ADS  Google Scholar 

  16. O. Thual, U. Frisch, and M. Henon, “Application of pole decomposition to an equation governing the dynamics of wrinkled flame fronts,” J. Phys., 46, 1485–1494 (1985).

    Google Scholar 

  17. S. S. Minaev, “Set of steady solutions describing a cellular flame in the case of hydrodynamic instability,” Combust., Expl., Shock Waves, 28, No. 1, 30–33 (1992).

    Article  Google Scholar 

  18. P. Cambray, K. Joulain, and G. Joulin, “Mean evolution of wrinkle wavelengths in a model of weakly-turbulent premixed flame,” Combust. Sci. Technol., 103, 265–282 (1994).

    Article  Google Scholar 

  19. K. A. Kazakov and M. A. Liberman, “Nonlinear theory of flame front instability,” Combust. Sci. Technol., 174, No. 7, 129–151 (2002).

    Google Scholar 

  20. M. L. Frankel, “An equation of surface dynamics modeling flame fronts as density discontinuities in potential flows,” Phys. Fluids A, 2, No. 10, 1879–1883 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. S. S. Minaev, E. A. Pirogov, and O. V. Sharypov, “A nonlinear model for hydrodynamic instability of an expanding flame,” Combust., Expl., Shock Waves, 32, No. 5, 481–488 (1996).

    Article  Google Scholar 

  22. G. Searby and J. Quinard, “Direct and indirect measurements of markstein numbers of premixed flames,” Combust. Flame, 82, No. 3, 298–311 (1990).

    Article  Google Scholar 

  23. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum, New York (1985).

    Google Scholar 

  24. V. V. Bychkov and M. A. Liberman, “Dynamics and stability of premixed flames,” Phys. Reports, 325, 115–237 (2000).

    Article  MathSciNet  Google Scholar 

  25. D. Breadley and C. M. Harper, “The development of instabilities in laminar explosion flames,” Combust. Flames, 99, 562–572 (1994).

    Article  Google Scholar 

  26. S. O. Unverdi and G. A. Tryggvason, “A front-tracking method for viscous incompressible multi-phase flows,” J. Comput. Phys., 100, 25–37 (1992).

    Article  MATH  ADS  Google Scholar 

  27. J. Qian, G. Tryggavason, and C. K. Law, “A front tracking method for the motion of premixed flames,” J. Comput. Phys., 144, 52–69 (1998).

    Article  ADS  Google Scholar 

  28. K. L. Pan, W. Shyy, and C. K. Law, “An immersed-boundary method for the dynamics of premixed flames,” Int. J. Heat Mass Transfer, 45, 3503–3516 (2002).

    Article  MATH  Google Scholar 

  29. K. L. Pan, “Front-tracking simulation for outward propagation of spherical flames,” in: 45th AIAA Aerospace Sciences Meeting and Exhibit, January 8–11, 2007, Reno, Nevada (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Fursenko.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 5, pp. 8–15, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fursenko, R.V., Minaev, S.S. & Pan, K.L. Hydrodynamic instability of inward-propagating flames. Combust Explos Shock Waves 45, 511–517 (2009). https://doi.org/10.1007/s10573-009-0062-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0062-0

Key words

Navigation