Skip to main content
Log in

Mathematical modeling of heterogeneous detonation in gas suspensions of aluminum and coal-dust particles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Results of investigations performed by the authors in the field of theoretical and numerical modeling of heterogeneous detonation of reacting gas suspensions since 2005 are systematized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Fedorov, V. M. Fomin, and T. A. Khmel’, “Theoretical and numerical study of detonation processes in gas suspensions with aluminum particles,” Combust., Expl., Shock Waves, 42, No. 6, 735–745 (2006).

    Article  Google Scholar 

  2. M. A. Nettleton and R. Stirling, “Detonation in suspensions of coal dust in oxygen,” Combust. Flame, 21, 307–314 (1973).

    Article  Google Scholar 

  3. D. H. Edwards, P. J. Fearnley, and M. A. Nettleton, “Detonation limits of clouds of coal dust in mixtures of oxygen and nitrogen,” Combust., Expl., Shock Waves, 23, No. 2, 239–245 (1987).

    Article  Google Scholar 

  4. A. V. Fedorov and T. A. Khmel’, “Mathematical simulation of detonation processes in a coal-particle suspension,” Combust., Expl., Shock Waves, 38, No. 6, 700–708 (2002).

    Article  Google Scholar 

  5. A. A. Borisov, B. E. Gelfand, S. A. Tsyganov, et al., “Ignition of dusts behind shock waves,” Khim. Fiz., No. 8, 1127–1128 (1983).

    Google Scholar 

  6. M. Sichel, S. M. Baek, C. W. Kauffman, et al., “The shock wave ignition of dusts,” AIAA J., 23, 1375–1380 (1985).

    Article  ADS  Google Scholar 

  7. V. M. Boiko, A. N. Papyrin, and S. V. Poplavskii, “Effect of volatiles on ignition delay in coal dust gas suspensions within shock waves,” Combust., Expl., Shock Waves, 27, No. 2, 223–231 (1991).

    Article  Google Scholar 

  8. V. M. Boiko, A. N. Papyrin, and S. V. Poplavskii, “Mechanism of dust ignition in incident shock waves,” Combust., Expl., Shock Waves, 29, No. 3, 389–394 (1993).

    Google Scholar 

  9. A. V. Fedorov and T. A. Khmel’, “Mathematical simulation of heterogeneous detonation of coal dust in oxygen with allowance for the ignition stage,” Combust., Expl., Shock Waves, 41, No. 1, 78–87 (2005).

    Article  Google Scholar 

  10. L. D. Smoot, M. D. Horton, and G. A. Williams, “Propagation of laminar pulverized coal-air flames,” in: Proc. 16th Int. Symp. on Combustion, The Combustion Inst., Pittsburgh (1977), pp. 375–387.

    Google Scholar 

  11. V. V. Koren’kov and V. N. Okhitin, “Numerical determination of effect of explosive density on parameters of air shock waves,”J. Appl. Mech. Tech. Phys., 24, No. 3, 403–406 (1983).

    Article  ADS  Google Scholar 

  12. S. K. Ubhayakar, D. B. Stickler, C. W. von Rosenberg, Jr., and R. E. Gannon, “Rapid devolatilization of pulverized coal in hot combustion gases,” in: Proc. 16th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1977), pp. 427–436.

    Google Scholar 

  13. T. W. Lester, W. R. Seeker, and J. F. Merklin, “The influence of oxygen and total pressure on the surface oxidation rate of bituminous coal,” in: Proc. 18th Int. Symp. on Combustion, The Combustion Inst., Pittsburgh (1981), pp. 1257–1265.

    Google Scholar 

  14. I. W. Smith, “The combustion rates of coal chars: A review,” in: Proc. Nineteenth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1982), pp. 11045–1065.

    Google Scholar 

  15. P. A. Libby and T. A. Blake, “Theoretical study of burning carbon particles,” Combust. Flame, 36, 139–169 (1979).

    Article  Google Scholar 

  16. Yu. A. Gosteev and A. V. Fedorov, “Ignition of the gascoal dust mixture. Pointwise approximation,” Combust., Expl., Shock Waves, 37, No. 6, 646–654 (2001).

    Article  Google Scholar 

  17. A. E. Medvedev, A. V. Fedorov, and V. M. Fomin, “Description of ignition and combustion of gas mixtures with solid particles by methods of mechanics of continuous media,” Combust., Expl., Shock Waves, 20, No. 2, 127–132 (1984).

    Article  Google Scholar 

  18. A. V. Fedorov, “Structure of heterogeneous detonation of aluminum particles dispersed in oxygen,” Combust., Expl., Shock Waves, 28, No. 3, 277–286 (1992).

    Article  Google Scholar 

  19. R. I. Nigmatulin, Dynamics of Multiphase Media, Part 1, Hemisphere Publ., New York (1991).

    Google Scholar 

  20. A. V. Fedorov and T. A. Khmel’, “Types and stability of detonation flows of aluminum particles in oxygen,” Combust., Expl., Shock Waves, 32, No. 2, 181–190 (1996).

    Article  Google Scholar 

  21. A. V. Fedorov, V. M. Fomin, and T. A. Khmel’, “Nonequilibrium model of steady detonations in aluminum particle-oxygen suspensions,” Shock Waves, 9, No. 5, 313–318 (1999).

    Article  MATH  ADS  Google Scholar 

  22. T. A. Khmel’ and A. V. Fedorov, “Numerical simulation of detonation initiation with a shock wave entering a cloud of aluminum particles,” Combust., Expl., Shock Waves, 38, No. 1, 101–108 (2002).

    Article  Google Scholar 

  23. T. A. Khmel’ and A. V. Fedorov, “Interaction of a shock wave with a cloud of aluminum particles in a channel,” Combust., Expl., Shock Waves, 38, No. 2, 206–214 (2002).

    Article  Google Scholar 

  24. A. V. Fedorov and T. A. Khmel’, “Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen,” Combust., Expl., Shock Waves, 41, No. 4, 435–448 (2005).

    Article  Google Scholar 

  25. A. V. Fedorov and T. A. Khmel’, “Structure and initiation of plane detonation waves in a bidisperse gas suspension of aluminum particles,” Combust., Expl., Shock Waves, 44, No. 2, 163–171 (2008).

    Article  Google Scholar 

  26. W. Ingignoli, B. Veyssiere, and B. A. Khasainov, “Study of detonation initiation in unconfined aluminum dust clouds,” in: G. Roy et al. (eds.), Gaseous and Heterogeneous Detonations, ENAS, Moscow (1999), pp. 337–350.

    Google Scholar 

  27. F. Zhang, H. Grönig, and A. van de Ven, “DDT and detonation waves in two-phase mixtures,” Shock Waves, 11, 53–71 (2001).

    Article  ADS  Google Scholar 

  28. F. Zhang, K. B. Gerrard, R. C. Ripley, and V. Tanguay, “Unconfined aluminum particles-air detonation,” in: Proc. 26th Int. Symp. on Shock Waves, Göttingen, Germany, July (2007), pp. 15–20.

  29. F. Zhang, K. B. Gerrard, and R. C. Ripley, “Reaction mechanism of aluminum particles-air detonation,” in: Proc. of the 7th Int. Symp. on Hazard, Prevention, and Mitigation of Industrial Explosions (July 2008, St. Petersburg, Russia), Vol. II (2008), pp. 223–237.

    Google Scholar 

  30. K. Benkiewicz and A. K. Hayashi, “Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement,” Shock Waves, 13, 385–402 (2003).

    Article  ADS  Google Scholar 

  31. B. Veyssiere, B. A. Khasainov, and A. Briand, “Investigation of detonation initiation in aluminum suspensions,” Shock Waves, 18, 307–315 (2008).

    Article  MATH  Google Scholar 

  32. A. V. Fedorov and T. A. Khmel’, “Formation and degeneration of cellular detonation in bidisperse gas suspensions of aluminum particles,” Combust., Expl., Shock Waves, 44, No. 3, 343–353 (2008).

    Article  Google Scholar 

  33. T. A. Khmel’, “Numerical simulation of two-dimensional detonation flows in a gas suspension of reacting solid particles,” Mat. Model., 16, No. 6, 73–77 (2004).

    Google Scholar 

  34. A. V. Fedorov and T. A. Khmel’, “Numerical technologies for studying heterogeneous detonation in gas suspensions,” Mat. Model., No. 8, 49–63 (2006).

    Google Scholar 

  35. H. O. Barthel, “Predicted spacings in hydrogen-oxygenargon detonations,” Phys. Fluids, 17, No. 8, 1547–1553 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedorov.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 4, pp. 166–177, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, A.V., Fomin, V.M. & Khmel’, T.A. Mathematical modeling of heterogeneous detonation in gas suspensions of aluminum and coal-dust particles. Combust Explos Shock Waves 45, 495–505 (2009). https://doi.org/10.1007/s10573-009-0060-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0060-2

Key words

Navigation