Skip to main content
Log in

Emission phenomena in a SHS combustion wave

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

There are numerous experimental data indicating that the action of electromagnetic and magnetic fields on the combustion wave of self-propagating high-temperature synthesis (SHS) changes the process kinetics and the structure and properties of the reaction products. Emission phenomena in the combustion wave have received less attention. High rates of chemical energy dissipation in SHS (1012 W/m3) are accompanied by physical phenomena such as the occurrence of a potential difference between the combustion front and reaction products, free electron emission from the combustion wave, and acoustic emission. Detailed studies of these nonequilibrium phenomena provide a deeper understanding of the reaction mechanism in solid flames to use nonthermal methods of combustion control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. G. Morozov, N. V. Kuznetsov, M. D. Nersesyan, and A. G. Merzhanov, “Electrochemical phenomena in self-propagating high-temperature synthesis, ” Dokl. Ross. Akad. Nauk, 351, No. 6, 780–785 (1996).

    Google Scholar 

  2. Yu. G. Morozov and N. V. Kuznetsov, “On the origin of the electromotive force of combustion, ” Chem. Phys., No. 11, 98–104 (2000).

    Google Scholar 

  3. V. A. Kudryashov, A. S. Mukasyan, and I. A. Filimonov, “Chemoionization waves in heterogeneous combustion, ” J. Mater. Synth. Proc., 4, No. 5, 353–358 (1996).

    Google Scholar 

  4. Yu. M. Maksimov, A. I. Kirdyashkin, V. S. Korogodov, and V. L. Polyakov, “Generation and transfer of an electric charge in self-propagating high-temperature synthesis using the Co-S system as an example, ” Combust., Expl., Shock Waves, 36, No. 5, 670–673 (2000).

    Article  Google Scholar 

  5. A. I. Kirdyashkin, Yu. M. Maksimov, V. S. Korogodov, and V. L. Polyakov, “Nonequilibrium electrical phenomena in self-propagating high-temperature synthesis, ” Dokl. Ross. Akad. Nauk, 381, No.1, 66–68 (2001).

    Google Scholar 

  6. O. K. Kamynina, N. I. Kidin, V. A. Kudryashov, A. S. Rogachev, and L. M. Umarov, “Ionization in a Combustion Wave, ” Combust., Expl., Shock Waves, 38, No. 4, 446–448 (2002).

    Article  Google Scholar 

  7. A. I. Kirdyashkin, V. L. Polyakov, Yu. M. Maksimov, and V. S. Korogodov, “Specific features of electric phenomena in self-propagating high-temperature synthesis, ” Combust., Expl., Shock Waves, 40, No. 2, 180–185 (2004)

    Article  Google Scholar 

  8. P. F. Pokhil, V. M. Mal’tsev, and V. M. Zaitsev, Methods for Studying Combustion and Detonation [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  9. V. A. Andreev, V. M. Mal’tsev, and V. A. Seleznev, “Study of the combustion of hafnium-boron mixtures by optical pyrometry, ” Combust. Expl., Shock Waves, 16, No. 4, 374–377 (1980).

    Article  Google Scholar 

  10. A. G. Merzhanov, A. S. Rogachev, L. M. Umarov, and N. V. Kir’yakov, “Experimental study of the gas phase formed in the processes of self-propagating high-temperature synthesis, ” Comb., Expl., Shock Waves, 33, No. 4, 439–447 (1997).

    Article  Google Scholar 

  11. V. G. Salamatov, G. A. Tsyba, A. I. Kirdyashkin, Yu. M. Maksimov, “TV system of detection of dynamic thermal fields in SHS processes, ” Izmer. Tekh., No. 9, 41 (2002).

  12. É. A. Sosnin, A. I. Kirdyashkin, V. G. Salamatov, R. M. Gabbasov, Yu. M. Maksimov, and V. F. Tarasenko, “SHS as a new source of intense UV-radiation: Spectroscopic study in a 200–400 nm wavelength range, ” in: 9th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows (2008), pp. 88–92.

  13. A. I. Kirdyashkin, V. G. Salamatov, Yu. M. Maksimov, É. A. Sosnin, V. F. Tarasenko, and R. M. Gabbasov, “X-ray radiation in self-propagating high-temperature synthesis processes, ” Comb., Expl., Shock Waves, 44, No. 6, 729–731 (2008).

    Article  Google Scholar 

  14. A. N. Smirnov, “Generation of acoustic oscillations in chemical reactions and physical chemical processes, ” Ross. Khim. Zh., No. 1, 25–34 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Maksimov.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 4, pp. 121–127, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, Y.M., Kirdyashkin, A.I., Gabbasov, R.M. et al. Emission phenomena in a SHS combustion wave. Combust Explos Shock Waves 45, 454–460 (2009). https://doi.org/10.1007/s10573-009-0056-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0056-y

Key words

Navigation