Skip to main content
Log in

Experimental study and kinetic modeling of benzene oxidation in one-dimensional laminar premixed low-pressure flames

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

One-dimensional laminar premixed benzene-oxygen-argon flames with equivalence ratios of 2, 1, and 0.7, stabilized at low pressure (45 mbar) on a flat flame burner are studied. Gas sampling is performed by a conical quartz nozzle, at different positions in the flames. Identification and monitoring of chemical species is performed by gas chromatography. These measurements should complete experimental data on rich and sooting benzene flames available in the literature and will be of particular help for further improvements of benzene oxidation mechanisms. A comparison of experimental results with data simulated with the use of two recent kinetic models highlights their inability to predict stoichiometric and lean benzene combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, and F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med., 329, 1753–1759 (1993).

    Article  Google Scholar 

  2. K. Siegmann and H. C. Siegmann, Current Problems in Condensed Matter, Plenum Press, New York (1998), pp. 143–160.

    Google Scholar 

  3. C. S. McEnally, L. D. Pfefferle, B. Atakan, and K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap,” Prog. Energy Combust. Sci., 32, 247–294 (2006).

    Article  Google Scholar 

  4. J. D. Bittner and J. B. Howard, “Composition profiles and reaction mechanisms in a near sooting premixed benzene/oxygen/argon flame,” Proc. Combust. Inst., 18, 1105–1116 (1981).

    Google Scholar 

  5. J. D. Bittner, “A molecular beam mass spectrometry study of fuel-rich and sooting benzene-oxygen flames,” Ph.D. Thesis, Dept of Chemical Engineering, Massachusetts Institute of Technology (1981).

  6. F. Defoeux, V. Dias, C. Renard, P. J. Van Tiggelen, and J. Vandooren, “Experimental investigation of the structure of a sooting premixed benzene/oxygen/argon flame burning at low pressure,” Proc. Combust. Inst., 30, 1407–1415 (2005).

    Article  Google Scholar 

  7. B. Yang, Y. Li, L. Wei, C. Huang, J. Wang, Z. Tian, R. Yang, L. Sheng, Y. Zhang, and F. Qi, “An experimental study of the premixed benzene/oxygene/argon flame with tunable synchrotron photoionization,” Combust. Flame, 31, 555–563 (2007).

    Google Scholar 

  8. V. Detilleux and J. Vandooren, “Molecular beam mass spectrometry analysis of PAH production pathways in C6H6/O2/Ar and C6H6/C2H2/O2/Ar flames,” Combust. Sci. Technol., 180, 1347–1369 (2008).

    Article  Google Scholar 

  9. D. A. Bittker, “Detailed mechanism of oxidation of benzene,” Combust. Sci. Technol., 79, 49–72 (1991).

    Article  Google Scholar 

  10. J. L. Emdee, K. Brezinsky, and I. Glassman, “A kinetic model for the oxidation of toluene near 1200 K,” J. Phys. Chem., 96, 2151–2161 (1992).

    Article  Google Scholar 

  11. R. P. Lindstedt and G. Skevis, “Detailed kinetic modeling of premixed benzene flames,” Combust. Flame, 99, 551–561 (1994).

    Article  Google Scholar 

  12. H.-Y. Zhang and J. T. McKinnon, “Elementary reaction modeling of high-temperature benzene combustion,” Combust. Sci. Technol., 107, 261–300 (1995).

    Article  Google Scholar 

  13. Y. Tan and P. Frank, “A detailed comprehensive kinetic model for benzene oxidation using recent kinetic results,” Proc. Combust. Inst., 26, 677–684 (1996).

    Google Scholar 

  14. M. U. Alzueta, P. Glarborg, and K. Dam-Johan-sen, “Experimental and kinetic study of the oxidation of benzene.” Int. J. Chem. Kinet., 32, 498–522 (2000).

    Article  Google Scholar 

  15. A. Ristori, P. Dagaut, A. El Bakali, G. Pengloan, and M. Cathonnet, “Benzene oxidation: Experimental results in a JDR and comprehensive kinetic modeling in JSR, shock-tube and flame,” Combust. Sci. Technol., 167, 223–256 (2001).

    Article  Google Scholar 

  16. H. Richter and J. B. Howard, “Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames,” Phys. Chem. Chem. Phys., 4, 2038–2055 (2002).

    Article  Google Scholar 

  17. N. Kunioshi, S. Komori, and S. Fukutani, “Numerical analysis of the effect of acetylene and benzene addition to low-pressure benzene-rich flat flames on polycyclic aromatic hydrocarbons formation,” Combust. Flame, 147, 1–10 (2006).

    Article  Google Scholar 

  18. G. L. Agafonov, I. Naydenova, P. A. Vlasov, and J. Warnatz, “Detailed kinetic modeling of soot formation in shock tube pyrolisis and oxidation of toluene and n-heptane,” Proc. Combust. Inst., 31, 575–583 (2007).

    Article  Google Scholar 

  19. N. M. Marinov, W. J. Pitz, C. K. Westbrook, M. J. Castaldi, and S. M. Senkan, “Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames,” Combust. Sci. Technol., 116, 211–287 (1996).

    Article  Google Scholar 

  20. M. J. Castaldi, N. M. Marinov, C. F. Melius, S. M. Senkan, W. J. Pitz, and C. K. Westbrook, “Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame,” Proc. Combust. Inst., 26, 693–702 (1996).

    Google Scholar 

  21. C. F. Melius, M. E. Colvin, N. M. Marinov, W. J. Pitz, and S. M. Senkan, “Reaction mechanisms in aromatic hydrocarbon formation involving cyclopentadienyl moiety,” Proc. Combust. Inst., 26, 685–692 (1996).

    Google Scholar 

  22. M. Frenklach, “Reaction mechanism of soot formation in flames,” Phys. Chem. Chem. Phys., 4, 2028–2037 (2002).

    Article  Google Scholar 

  23. C. Venkat, K. Brezinsky, and I. Glassman, “High temperature oxidation of aromatic hydrocarbons,” Proc. Combust. Inst., 19, 143–152 (1982).

    Google Scholar 

  24. G. Bermudez and L. D. Pfefferle, “Laser ionisation time-of-flight mass spectrometry combined with residual gas analysis for the investigation of moderate temperature benzene oxidation,” Combust. Flame, 100, 41–51 (1995).

    Article  Google Scholar 

  25. Y. Chai and L. D. Pfefferle, “An experimental study of benzene oxidation at fuel-lean and stoichiometric equivalence ratio conditions,” Fuel, 77, 313–320 (1998).

    Article  Google Scholar 

  26. J. H. Kent, “A noncatalytic coating for platinum-rhodium thermocouples,” Combust. Flame, 14, 279–281 (1970).

    Article  Google Scholar 

  27. COSILAB®, The Combustion Simulation Laboratory Version 2.0.8. Rotexo GmbH & Co. KG. Haan, Germany (2007); www.SoftPredict.com.

    Google Scholar 

  28. L. K. Madden, L. V. Moskaleva, S. Kristyan, and M. C. Lin, “Ab initio MO study of the unimolecular decomposition of the phenyl radical,” J. Phys. Chem. A, 101, 6790–6797 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Detilleux.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 4, pp. 53–66, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detilleux, V., Vandooren, J. Experimental study and kinetic modeling of benzene oxidation in one-dimensional laminar premixed low-pressure flames. Combust Explos Shock Waves 45, 392–403 (2009). https://doi.org/10.1007/s10573-009-0049-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0049-x

Key words

Navigation