Skip to main content
Log in

Some numerical issues on simulation of detonation cell structures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The present study examines several numerical issues on simulation of detonation cell structures. Various stability regimes ranging from weakly to highly unstable detonations are considered. The analysis treats two-dimensional inviscid fluid-dynamics equations and a one-step reaction model. A series of investigations is carried out to identify numerical requirements for high-fidelity simulations of detonation cell structures. Emphasis is placed on the wave-front dynamics and evolution of cellular patterns. The effects of the preexponential factor, grid size, time step, domain length, and exit boundary condition on the cellular structure and cell size are examined systematically. The required numerical grid size is determined and compared with various length scales associated with a steady Zel’dovich-von Neumann-Döring detonation wave. A general rule for the grid-resolution requirement is proposed for the first time: a minimum of 5 grid points should be included in the heat-release zone of the corresponding steady Zel’dovich-von Neumann-Döring detonation wave, in order to achieve an accurate simulation of detonation cell structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Fickett and W. C. Davis, Detonation Theory and Experiment, Dover, New York (2000).

    Google Scholar 

  2. E. S. Oran, J. P. Boris, T. Young, et al., “Numerical simulations of detonations in hydrogen-air and methane-air mixtures,” in: Eighteenth Int. Symp. on Combustion (1981), pp. 1641–1649.

  3. S. Taki and T. Fujiwara, “Numerical simulation of triple shock behavior of gaseous detonation,” ibid., pp. 1671–1681.

  4. K. Kailasanath, E. S. Oran, J. P. Boris, and T. R. Young, “Determination of detonation cell-size and the role of transverse-waves in two-dimensional detonations,” Combust. Flame, 61, No. 3, 199–209 (1985).

    Article  Google Scholar 

  5. A. Bourlioux and A. J. Majda, “Theoretical and numerical structure for unstable two-dimensional detonations,” Combust. Flame, 90, Nos. 3–4, 211–229 (1992).

    Article  ADS  Google Scholar 

  6. E. S. Oran, J. W. Weber, E. I. Stefaniw, et al., “A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model,” Combust. Flame, 113, Nos. 1–2, 147–163 (1998).

    Article  Google Scholar 

  7. V. N. Gamezo and D. Desbordes, “Formation and evolution of two-dimensional cellular detonations,” Combust. Flame, 116, Nos. 1–2, 154–165 (1999).

    Article  Google Scholar 

  8. S. Singh, J. M. Powers, and S. Paolucci, “Detonation solutions from reactive navier-stokes equations,” AIAA Paper No. 1999-0966 (1999).

  9. M. Nikolic, D. N. Williams, and L. Bauwens, “Detonation cell sizes — A numerical study,” AIAA Paper No. 1999-0967 (1999).

  10. A. I. Gavrikov, A. A. Efimenko, and S. B. Dorofeev, “A model for detonation cell size prediction from chemical kinetics,” Combust. Flame, 120, Nos. 1–2, 19–33 (2000).

    Article  Google Scholar 

  11. G. J. Sharpe, “Transverse waves in numerical simulations of cellular detonations,” J. Fluid Mech., 447, 31–51 (2001).

    MATH  ADS  MathSciNet  Google Scholar 

  12. X. Y. Hu, B. C. Khoo, D. L. Zhang, and Z. L. Jiang, “The cellular structure of a two-dimensional H2/O2/Ar detonation wave,” Combust. Theory Model., 8, No. 2, 339–359 (2004).

    Article  ADS  Google Scholar 

  13. Z. Liang and L. Bauwens, “Cell structure and stability of detonations with a pressure-dependent chain-branching reaction rate model,” Combust. Theory Model., 9, No. 1, 93–112 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Pintgen, C. A. Eckett, J. M. Austin, and J. E. Shepherd, “Direct observations of reaction zone structure in propagating detonations,” Combust. Flame, 133, No. 3, 221–229 (2003).

    Article  Google Scholar 

  15. J. Y. Choi, D. W. Kim, I. S. Jeung, F. H. Ma, and V. Yang, “Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation,” in: Proc. of the Combust. Inst., 31, No. 2, 2473–2480 (2007).

    Article  Google Scholar 

  16. J. Y. Choi, I. S. Jeung, and Y. Yoon, “Computational fluid dynamics algorithms for unsteady shock-induced combustion. Part 1: Validation,” AIAA J., 38, No. 7, 1179–1187 (2000).

    Article  Google Scholar 

  17. J. Y. Choi, I. S. Jeung, and Y. Yoon, “Computational fluid dynamics algorithms for unsteady shock-induced combustion. Part 2: Comparison,” ibid., pp. 1188–1195.

  18. J. M. Austin, F. Pintgen, and J. E. Shepherd, “Reaction zones in highly unstable detonations,” in: Proc. of the Combust. Inst., 30, No. 2, 1849–1858 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yang.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 5, pp. 72–92, September–October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.Y., Ma, F.H. & Yang, V. Some numerical issues on simulation of detonation cell structures. Combust Explos Shock Waves 44, 560–578 (2008). https://doi.org/10.1007/s10573-008-0086-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0086-x

Key words

Navigation