Skip to main content
Log in

Two-dimensional cellular structure of a kinetically unstable detonation front

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Based on previously published results on the detonation of gaseous and liquid explosives, an explanation is given to the formation of the two-dimensional cellular structure of the detonation front of some gas mixtures undergoing a two-step exothermic transformation at the wave front and suggestions are proposed for the mechanism of development of the two-dimensional cellular structure in the case of detonation transformation of gas mixtures with one-step chemical kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. I. Shchelkin and Ya. K. Troshin, Gas-Dynamic Combustion [in Russian], Izd. Akad. Nauk SSSR (1963).

  2. V. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Structure of the Detonation Front in Gases [in Russian], Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1963).

    Google Scholar 

  3. A. N. Dremin, S. D. Sarov, V. S. Trofimov, and K. K. Shvedov, Detonation Waves in Condensed Media [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  4. K. I. Shchelkin, “Two types of unstable combustion,” Zh. Éksp. Teor. Fiz., 36, 600–606 (1959).

    MathSciNet  Google Scholar 

  5. V. I. Manzhalei, “Fine structure of the leading front of gas detonation,” Combust., Expl., Shock Waves, 13, No. 3, 402–404 (1977).

    Article  Google Scholar 

  6. V. A. Subbotin, “Two kinds of transverse wave structure in multifront detonation,” Combust., Expl., Shock Waves, 11, No. 1, 83–88 (1975).

    Article  MathSciNet  Google Scholar 

  7. H. N. Presles, D. Desbordes, M. Guirard, and C. Guirard, “Gaseous nitromethane and nitromethane-oxygen mixture, a new detonation structure,” Shock Waves, 6, 111–114 (1996).

    Article  ADS  Google Scholar 

  8. F. Joubert, D. Desbordes, and H. N. Presles, “Structure cellulaire de la detonation des melanges H2-NO2/N2O4,” C. R. Acad. Sci., Ser. Mechanique, 331, 365–372 (2003).

    Google Scholar 

  9. H. N. Presles and D. Desbordes, “Nonideal behavior of multi-headed self-sustained gaseous detonation,” in: Int. Conf. on Combustion and Detonation, Zel’dovich Memorial II. Progress in Combustion and Detonation, Moscow, Aug. 30–Sept. 3 (2004), pp. 309–310.

  10. V. Guilly, B. Khasainov, H. N. Presles, and D. Desbordes, “Simulation numeriqul des detonations a double structure cellure,” C. R. Acad. Sci., Ser. Mechanique, 334, 679–685 (2006).

    Google Scholar 

  11. A. A. Vasil’ev, A. A. Moletotov, and A. V. Trotsyuk, “On the two-dimensional cellular structure of gaseous detonations,” in: Abstracts of the XIII Symp. on Combustion and Detonation, Chernogolovka 2005, p. 130; see also CD: XIII Symp. on Combustion and Detonation, Chernogolovka (2005).

  12. A. A. Vasil’ev and A. V. Trotsyuk, “Multi-scaled cellular structure of gaseous detonations,” in: Book of Abstr. of 5th Int. Seminar on Flame Structure, Novosibirsk, Russia, Jule 11–14 (2005), p. 82; See also: O. Korobeinichev (ed.), ISFS Proc. of the 5th Int. Seminar on Flame Structure, Novosibirsk (2005), OPr-08 (CD ISBN 5-98901-004-4).

  13. A. A. Grib, “Hydrodynamic theory of blast waves,” Prikl. Mekh. Mat., 8, No. 4, 273 (1944).

    MathSciNet  Google Scholar 

  14. Ya. B. Zeldovich, “Theory of detonation propagation in gas systems,” Zh. Éksp. Teor. Fiz., 10, No. 5, 542–568 (1940).

    Google Scholar 

  15. J. Von Neumann, “Theory of detonation waves (OD-02),” Technical Report, National Defense Research Committee of the Office of Scientific Research and Development, Division B, Section B-1, Serial No. 238 (1942).

  16. W. Döring, “Über der Detonation verging in Gasen,” Ann. Phys., 43, No. 5, 421–436 (1943).

    Article  Google Scholar 

  17. V. A. Mikhel’son, “Über die normale Entzündungs/-geschwindigkeit explosiver Gazgemishe,” Ann. Phys. Chem., 37, No. 5, 1–24 (1889).

    Google Scholar 

  18. V. A. Mikhel’son, “On the normal ignition velocity of explosive gas mixtures,” in: Proc. Imperial Moscow University, Phys.-Mat. Ser., 10, 1–93 (1893).

    Google Scholar 

  19. D. L. Chapman, “On the rate of explosions in gases,” Phil. Mag., 47, 90–104 (1899).

    Google Scholar 

  20. E. Jouguet, “On the propagation of chemical reaction in gases,” J. Math. Pures. Appl., 7, 347–425 (1905); 2, 5–86 (1906).

    Google Scholar 

  21. K. I. Shchelkin, Detonation [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  22. A. N. Dremin, Toward Detonation Theory, Springer, New York (1999).

    Google Scholar 

  23. A. N. Dremin, “On the limit of detonation on concentration of liquid explosives’ mixtures with nonexplosive diluents,” in: Proc. of the 13th Detonation Sympos. (Int.), Norfolk, Verginia, USA, July 23–28 (2006), pp. 720–724.

  24. R. F. Chaiken, “Comments of hypervelocity wave phenomena in condensed explosives,” J. Chem. Phys., 33, 760–768 (1960).

    Article  ADS  Google Scholar 

  25. A. N. Dremin, “Pulsating detonation front,” J. Appl. Mech. Tech. Phys., No. 4. 159–169 (1983).

  26. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum, New York (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 4, pp. 80–86, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dremin, A.N. Two-dimensional cellular structure of a kinetically unstable detonation front. Combust Explos Shock Waves 44, 444–450 (2008). https://doi.org/10.1007/s10573-008-0071-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0071-4

Key words

Navigation