Skip to main content
Log in

Spectral studies of the gas component of an aluminum dust flame

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The combustion zone of a steady-state laminar diffusion flame of aluminum particles of diameter 4.8 µm at a metal weight percentage of 0.4 kg/m3 was studied by atomic and molecular emission spectra. Absolute measurements of the luminosity of the sequence of bands due to AlO made it possible to determine the gas-phase temperature (3200± 100 K) and the AlO vapor concentration [(1.5 ± 0.5) · 1021 m−3] at the flame front. From an analysis of measurement data on the intensity and contour of the resonance line of aluminum, it is concluded that the metal particles burn individually to form microflames. Estimates were made of the size of the combustion zone of an individual particle and the gas-phase temperature near a particle (3150 ± 200 K). Some features of the combustion mechanism of fine aluminum particles in the dust flame are analyzed. The capabilities of spectral methods for studying the thermal and concentration structures of dust flames are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, et al., Combustion of Metal Powders in Active Media [in Russian], Nauka, Mocsow (1972).

    Google Scholar 

  2. B. Brown and K. McArty, “Particle size of condensed oxides from combustion of metallized solid propellants,” in: 8th Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1962), pp. 814–823.

    Google Scholar 

  3. A. N. Zolotko, N. I. Poletaev, J. I. Vovchuk, et al., “Nanoparticles formation by combustion techniques,” in: C. G. Granqvist, L. B. Kish, and W. H. Marlow (eds.), Gas Phase Nanoparticle Synthesis, Kluwer Academic, Dordrecht (2004), pp. 123–156.

    Google Scholar 

  4. A. N. Zolotko, Ya. I. Vovchuk, N. I. Poletaev, A. V. Florko, and I. S. Altman, “Synthesis of nanooxides in two-phase laminar flames,” Combust., Expl., Shock Waves, 32, No. 3, 262–269 (1996).

    Article  Google Scholar 

  5. V. I. Malinin, E. I. Kolomin, and I. S. Antipin, “Ignition and combustion of aluminum-air suspensions in a reactor for high-temperature synthesis of alumina powder,” Combust., Expl., Shock Waves, 38, No. 5, 525–534 (2002).

    Article  Google Scholar 

  6. M. N. Laritchev, I. O. Leipunsky, P. A. Pshechenkov, et al., “Study of oxidation of ultra fine aluminum particles in air, O2 and CO2. The possibility of low temperature burning of aluminum nanoparticles,” in: Proc. of Int. Conf. on Combustion and Detonation, Zel’dovich Memorial II, Moscow, Russia, August 30–September 3 (2004), CD ROM, No. WS1-9.

  7. M. W. Beckstead, “Correlating aluminum burning times,” Combust., Expl., Shock Waves, 41, No. 5, 533–546 (2005).

    Article  Google Scholar 

  8. V. M. Gremyachkin, A. G. Istratov, and O. I. Leipunskii, “Model for the combustion of metal droplets,” Combust., Expl., Shock Waves, 31, No. 3, 313–318 (1975).

    Google Scholar 

  9. R. Friedman and A. Macek, “Ignition and combustion of aluminum particles in hot ambient gases,” Combust. Flame, 6, No. 1, 9–19 (1962).

    Article  Google Scholar 

  10. P. Bucher, R. A. Yetter, T. Yetter, et al., “Flame structure measurement of single isolated aluminum particles burning in air,” in: 26th Symp. (Int). on Combustion, Vol. 2, Combustion Inst., Pittsburgh, PA (1996), pp. 1899–1909.

    Google Scholar 

  11. E. L. Dreizin, “On the mechanism of asymmetric aluminum particle combustion,” Combust. Flame, 117, No. 4, 841–850 (1999).

    Article  Google Scholar 

  12. N. I. Poletaev and A. V. Florko, “Radiative characteristics of an aluminum dust flame. Condensed phase,” Combust., Expl., Shock Waves, 43, No. 4, 414–422 (2007).

    Article  Google Scholar 

  13. N. I. Poletayev, A. N. Zolotko, A. V. Florko, et al., “Combustion synthesis and investigation of metal oxide nanopowders properties,” in: Chemical Engineering — A Key Technology Serving Mankind, Proc. of 3rd European Congress of Chemical Engineering, Nurenberg, June 26–28 (2001).

  14. A. V. Florko, S. V. Kozitskii, A. N. Pisarenko, and A. M. Matsko, “Study of combustion of single magnesium particles at low pressure,” Combust., Expl., Shock Waves, 22, No. 2, 159–163 (1986).

    Article  Google Scholar 

  15. L. A. Kuznetsova, N. E. Kuz’menko, and Yu. A. Plastinin, Probabilities of Optical Transitions of Diatomic Molecules [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  16. A. A. Radtsig and B. N. Smirnov, Handbook on Atomic and Molecular Physics [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  17. B. G. Trusov, Astra. Modeling Chemical and Phase Equilibria at High Temperatures [in Russian], Moscow (1989).

  18. V. M. Gremychkin, A. G. Istratov, V. I. Kolesnikov-Svinarev, and O. I. Leipunskii, “Buildup of alumina on a burning aluminum particle,” Fiz. Goreniya Vzryva, 16, No. 1, 155–156 (1980).

    Google Scholar 

  19. S. Yuasa, Y. Zhu, and S. Sogo, “Ignition and combustion of aluminum in oxygen/nitrogen mixture stream,” Combust. Flame, 108, No. 4, 387–396 (1997).

    Article  Google Scholar 

  20. A. N. Zaidel, G. V. Ostrovskaya, and Yu. I. Ostrovskii, Technique and Practice of Spectroscopy [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  21. S. É. Frish, Spectroscopy of Gas-Discharge Plasma [in Russian], Nauka (1970).

  22. N. D. Ageev, S. V. Goroshin, A. N. Zolotko, et al., “Velocity of steady-state flames in gas-aluminum suspensions,” in: Combustion of Heterogeneous and Gas Systems, Proc. IX Symp. on Combustion and Explosion, Chernogoglovka (1989), pp. 83–85.

  23. L. A. Klyachko and S. V. Goroshin, “Ignition and combustion of gas-particle suspensions,” Inzh.-Fiz. Zh., 54, No. 2, 330–341 (1988).

    Google Scholar 

  24. NIST Standard Reference Database, No. 69, June 2005 Release, NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Poletaev.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 4, pp. 72–79, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poletaev, N.I., Florko, A.V. Spectral studies of the gas component of an aluminum dust flame. Combust Explos Shock Waves 44, 437–443 (2008). https://doi.org/10.1007/s10573-008-0070-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0070-5

Key words

Navigation