Skip to main content
Log in

Filtration combustion of liquid monofuels

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A one-dimensional two-temperature model for filtration combustion of liquid monofuels is proposed. The model is used to analyze the filtration combustion of liquid hydrazine in narrow tubes. Two steady-state regimes are found. In regime I, the dominant mechanism of heat transfer from the combustion products in the preflame zone is heat conduction in the gas, and in regime II, this is interfacial convective heat transfer and heat conduction in the solid phase. Parameter ranges for the existence of the regimes are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. M. Laevskii and V. S. Babkin, in: Yu. Sh. Matros (ed.), Propagation of Thermal Waves in Heterogeneous Media [in Russian], Nauka, Novosibirsk (1988).

    Google Scholar 

  2. V. S. Babkin, “Filtrational combustion of gases. Present state of affairs and prospects,” Pure Appl. Chem., 65, No. 2, 335–344 (1993).

    Article  Google Scholar 

  3. K. V. Dobrego and S. A. Zhdanok, Physics of Filtration Gas Combustion, Lykov Institute of Heat and Mass Transfer [in Russian], Minsk (2002).

  4. S. I. Fut’ko and S. A. Zhdanok, Chemistry of Filtration Gas Combustion [in Russian], Belaruskaya Nauka, Minsk (2004).

    Google Scholar 

  5. K. V. Dobrego, S. A. Zhdanok, and A. I. Zaruba, “Experimental and analytical investigation of the gas filtration combustion inclination instability,” Heat and Mass Transfer, 44, No. 11, 2127–2136 (2001).

    Article  MATH  Google Scholar 

  6. N. A. Kakutkina and M. Mbarawa, “Transition process in filtration gas combustion,” Combust., Expl., Shock Waves, 40, No. 5, 553–563 (2004).

    Article  Google Scholar 

  7. N. A. Kakutkina, N. A. Korzhavin, and M. Mbarawa, “Filtration combustion of hydrogen-air, propane-air, and methane-air mixtures in inert porous media,” Combust., Expl., Shock Waves, 42, No. 4, 372–383 (2006).

    Article  Google Scholar 

  8. N. A. Kakutkina, “Some stability aspects of gas combustion in porous media,” Combust., Expl., Shock Waves, 41, No. 4, 395–404 (2005).

    Article  Google Scholar 

  9. S. S. Minaev and V. S. Babkin, “Flame propagation in a variable-section channel with gas filtration,” Combust., Expl., Shock Waves, 37, No. 1, 13–20 (2001).

    Article  Google Scholar 

  10. O. S. Rabinovich, A. V. Fefelov, and N. V. Pavlyukevich, “Modeling of premixed gas combustion in porous media, composed of coarse-sized particles: 1-D description with discrete solid phase,” in: 26 Int. Symp. on Combustion, Combustion Inst., Pittsburgh (1996), pp. 3383–3389.

    Google Scholar 

  11. K. V. Dobrego and S. A. Zhdanok, “Engineering analysis of the filtration combustion characteristics based on a two-temperature one-dimensional model,” Inzh.-Fiz. Zh., 71, 424–432 (1998).

    Google Scholar 

  12. J. R. Howell, M. J. Hall, and J. I. Ellzey, “Combustion of hydrocarbon fuels within porous inert media,” Prog. Energ. Combust. Sci., 22, No. 2, 122–145 (1996).

    Article  Google Scholar 

  13. R. Johansson, H. Thunman, and B. Leckner, “Influence of intraparticle gradients in modeling of fixed bed combustion,” Combust. Flame, 149, 49–62 (2007).

    Article  Google Scholar 

  14. J. G. Hoffman, R. Echigo, H. Yoshida, and S. Tada, “Experimental study on combustion in porous media with a reciprocating flow system,” Combust. Flame, 111, 32–46 (1997).

    Article  Google Scholar 

  15. R. S. Dhamrat and J. L. Ellzey, “Numerical and experimental study of conversion of methane to hydrogen in a porous media reactor,” Combust. Flame, 144, 698–709 (2006).

    Article  Google Scholar 

  16. G. Brenner, K. Pickenacker, O. Pickenacker, D. Trimis, K. Wawrzinek, and T. Weber, “Numerical and experimental investigation of matrix-stabilized methane-air combustion in porous inert media,” Combust. Flame, 123, 201–213 (2000).

    Article  Google Scholar 

  17. V. S. Babkin, B. Yu. Koshkin, and Yu. M. Laevskii, “Combustion of moving explosives in narrow tubes,” Dokl. Akad. Nauk SSSR, 304, 892–895 (1989).

    Google Scholar 

  18. B. Yu. Koshkin, V. A. Bunev, V. S. Babkin, and Yu. M. Laevsky, “The decomposition flame of hydrazine in inert porous media,” Combust. Flame, 103, 143–150 (1995).

    Article  Google Scholar 

  19. N. A. Kakutkina and V. A. Bunev, “Filtration combustion of liquid monofuels,” Combust., Expl., Shock Waves, 37, No. 4, 395–401 (2001).

    Article  Google Scholar 

  20. I. K. Kikoin (ed.), Tables of Physical Quantities: Handbook [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  21. E. W. Shmidt, Hydrazine and Its Derivatives. Preparation, Properties, Applications, John Wiley, New York (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kakutkina.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 4, pp. 21–30, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakutkina, N.A. Filtration combustion of liquid monofuels. Combust Explos Shock Waves 44, 388–396 (2008). https://doi.org/10.1007/s10573-008-0064-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0064-3

Key words

Navigation