Skip to main content
Log in

Destruction of filled polymer targets by high-velocity impact

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

An analysis is made of experimental results on impact (at velocities of 0.6–6.26 km/sec) of projectiles made of Caprolon and polyethylene and compound projectiles (made of Caprolon with steel or aluminum spheres) on targets made of an epoxy resin with and without a filler (Al2O3) in a ballistic range. Impact on the edge surface of cylindrical targets with a characteristic size of 0.05 m is investigated. Complete fracture of the targets was recorded at velocities above 1 km/sec. The masses and dimensions of the collected fragments are subjected to statistical analysis. Average values of the fragment sizes and specific surface fracture energy are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Glushak, V. F. Kuropatenko, and S. A. Novikov, Strength of Materials under Dynamic Loading [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

  2. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media [in Russian], Yanus-K, Moscow (1996).

    Google Scholar 

  3. V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov, et al., High-Velocity Interaction [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (1999).

    Google Scholar 

  4. L. V. Al’tshuler, R. F. Trunin, V. D. Urlin, et al., “Development of dynamic methods for high-pressure research in Russia,” Usp. Fiz. Nauk, 169, No. 2, 323–344 (1999).

    Article  Google Scholar 

  5. R. Kinslow (ed.), High-Velocity Impact Phenomena, Academic Press, New York-London (1970).

    Google Scholar 

  6. B. L. Strauss, “New ablative heat shield materials for mars landers,” J. Spacecraft Rockets, 4, No. 10, 1304–1309 (1967).

    Article  ADS  Google Scholar 

  7. N. N. Pilyugin, “Determining the velocities of sticking of electrons to aluminum oxides from ballistic experiments,” Teplofiz. Vysok. Temp., 32, No. 3, 339–353 (1994).

    Google Scholar 

  8. A. N. Pilyugin and N. N. Pilyugin, “Determining the rate constants of recombination and sticking reactions from ballistic experiments,” Combust., Expl., Shock Waves, 31, No. 5, 70–82 (1995).

    Article  Google Scholar 

  9. N. N. Pilyugin, “Sticking velocities of electrons to aluminum oxides in mixtures of air with xenon,” Combust., Expl., Shock Waves, 41, No. 3, 65–73 (2005).

    Article  MathSciNet  Google Scholar 

  10. N. N. Pilyugin, “Laboratory determination of the rate constant of silicon ion recombination: Applications to studies of a meteoric trace,” Astronom. Vestn., 31, No. 6, 550–557 (1997).

    Google Scholar 

  11. P. V. Kozlov, S. V. Kochergin-Nikitskii, and N. N. Pilyugin, “Fracture of polymer materials under high-velocity impact,” in: Abstracts of IX All-Union Congress on the Theoretical and Applied Mechanics, Vol. 3, Lobachevskii Nizhegorod. Gos. Univ., Novgorod (2006), pp. 112–113.

    Google Scholar 

  12. D. Kerren, D. Shocky, L. Simen, and M. Ostin, “Mechanisms and models of crater formation in environment,” in: Impact, Explosion and Fracture [Russian translation], Mir, 1981, pp. 81–115.

  13. A. Fujiwara, “Results obtained by laboratory simulations of catastrophic impact,” Memore S. A. It., 57, No. 1, 47–63 (1986).

    ADS  Google Scholar 

  14. G. S. Khodakov, Physics of Grinding [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  15. A. N. Kolmogorov, “Lognormal law of distribution of particle sizes in grinding,” Dokl. Akad. Nauk, SSSR, 31, No. 2 (1942).

  16. J. J. Gilvary, “Fracture of brittle solids,” J. Appl. Phys., 32, No. 3 (1961).

    Google Scholar 

  17. L. I. Baron and I. E. Hmelkovskii, Rock Breaking by Free Impact [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  18. É. A. Koshelev, V. M. Kuznetsov, S. G. Sofronov, and A. G. Chernikov, “Statistics of fragments formed during fracture of solids by explosion,” J. Appl. Mech. Tech. Phys., No. 2, 87–100 (1971).

  19. V. A. Odintsov, “Bimodal distribution of fragments of cylinders,” Combust., Expl., Shock Waves, 27, No. 5, 118–122 (1991).

    Article  MathSciNet  Google Scholar 

  20. V. A. Odintsov, “Hyperexponential spectra of explosive destruction of metal cylinders,” Mekh. Tverd. Tela, No. 5, 48–55 (1992).

  21. F. Kun, F. K. Wittel, H. J. Herrmann, B. H. Kroplin, and K. J. Maloy, “Scaling behavior of fragment shapes,” Phys. Rev. Lett., No. 96, 025504, 1–4 (2006).

    Google Scholar 

  22. A. B. Kiselev, “Model of fragmentation during high-velocity collision of particles of space dust,” Vestnik Mosk. Univ., Ser. 1, Mat., Mekh., No. 3, 50–55 (2001).

  23. W. K. Brown and K. H. Wohletz, “Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions,” J. Appl. Phys., No. 78(4), 2758–2763 (1995).

    Google Scholar 

  24. H. Melosh, Impact Cratering. A Geological Process, Oxford University Press-Clarendon Press, Oxford-New York (1989).

    Google Scholar 

  25. D. E. Munson, R. R. Boade, and K. W. Schuler, “Stress-wave propagation in Al2O3-epoxy mixtures,” J. Appl. Phys., 49, No. 9, 797–807 (1978).

    Article  Google Scholar 

  26. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Pilyugin.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 2, pp. 129–138, March–April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilyugin, N.N. Destruction of filled polymer targets by high-velocity impact. Combust Explos Shock Waves 44, 239–247 (2008). https://doi.org/10.1007/s10573-008-0031-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0031-z

Key words

Navigation