Skip to main content
Log in

Experimental study of shock-wave magnetic cumulation

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Experiments with aluminum, copper, and silicon powders are performed to study the mechanism of shock-wave magnetic cumulation. For all substances examined, the magnetic field as a function of the cavity area is described by a power dependence with a constant exponent α. The value of α depends substantially on the substance porosity and particle size. For copper and silicon powders and for small-size aluminum powder, the value of α is consistent with the ratio of the particle velocity u to the wave velocity D, as is predicted by a simple model of magnetic cumulation. For the fine and coarse aluminum powders, the value of α is noticeably smaller than the ratio u/D. The lower effectiveness of magnetic compression can be attributed to insufficiently high electrical conductivity (fine powder) and the emergence of conductivity with incomplete compression of the substance (coarse powder). In the first case, diffusion losses of the magnetic flux in the compressed substance are fairly noticeable. In the second case, the work against the magnetic forces is performed by a layer in the shock-transition region, which has a lower particle velocity. The mechanism of magnetic cumulation involves substance metallization under shock compression and expelling of some portion of the magnetic flux to the non-conducting region ahead of the shock front. The two-stage mechanism of cumulation known in the literature (metallization in the elastic precursor and subsequent compression of the field in the main wave) is not validated by experiments with measurements of the particle and wave velocities and electrical conductivity and by experiments on magnetic cumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Bichenkov, S. D. Gilev, and A. M. Trubachev, “Magnetic course generators using the transition of a semiconductor material into a conducting state,” J. Appl. Mech. Tech. Phys., 21, No. 5, 678–681 (1980).

    Article  ADS  Google Scholar 

  2. S. D. Gilev and A. M. Trubachev, “MC generators operating on powdered aluminum,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 48, Inst. of Hydrodynamics, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1980), pp. 30–32.

    Google Scholar 

  3. K. Nagayama, “New method of magnetic flux compression by means of the propagation of shock-induced metallic transition in semiconductors,” Appl. Phys. Lett., 38, No. 2, 109–110 (1981).

    Article  ADS  Google Scholar 

  4. S. D. Gilev and A. M. Trubachev, “Production of strong magnetic fields by shock waves in a medium,” Sov. Tech. Phys. Lett., 8, No. 8, 396–397 (1982).

    Google Scholar 

  5. K. Nagayama, T. Oka, and T. Mashimo, “Experimental study of a new mechanism of magnetic flux cumulation by the propagation of shock-compressed conductive region in silicon,” J. Appl. Phys., 53, No. 4, 3029 (1982).

    Article  ADS  Google Scholar 

  6. S. D. Gilev and A. M. Trubachev, “Obtaining strong magnetic fields with magnetocumulating generators based on a porous material,” J. Appl. Mech. Tech. Phys., 24, No. 5, 639–642 (1983).

    Article  ADS  Google Scholar 

  7. K. Nagayama and T. Mashimo, “New method of magnetic flux compression by the propagation of shock-compressed conductive region in semiconductors,” in: High Field Magnetism, Proc. Int. Symp. on High Field Magnetism (Osaka, Japan, September 13–14, 1982), North-Holland, Amsterdam (1983), pp. 319–321.

    Google Scholar 

  8. E. I. Bichenkov, S. D. Gilev, and A. M. Trubachev, “Shock-wave MC generators,” in: V. M. Titov and G. A. Shvetsov (eds.), Ultrahigh Magnetic Fields. Physics. Techniques. Applications, Proc. 3rd Int. Conf. on Generation of Megagauss Magnetic Fields and Related Experiments (Novosibirsk, 1983), Nauka, Moscow (1984), pp. 88–93.

    Google Scholar 

  9. K. Nagayama and T. Mashimo, “Magnetohydrodynamic study of flux cumulation by the propagation of shock-compressed conductive region in semiconductors,” ibid., pp. 270–277.

    Google Scholar 

  10. S. D. Gilev and A. M. Trubachev, “Application of shock waves for generation of superstrong magnetic fields,” in: Electromechanical Converters of Energy [in Russian], Naukova Dumka, Kiev (1986), pp. 113–115.

    Google Scholar 

  11. E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, and A. M. Trubachev, “Shock-wave method of generating megagauss magnetic fields,” J. Appl. Mech. Tech. Phys., 28, No. 3, 331–339 (1987).

    Article  ADS  Google Scholar 

  12. E. I. Bichenkov, S. D. Gilev, A. M. Ryiabchun, and A. M. Trubachev, “Shock-wave method for generation of megagauss magnetic fields,” in: C. M. Fowler, R. S. Caird, and D. J. Erickson (eds.), Megagauss Technology and Pulse Power Application: Proc. Fourth Int. Conf. on Megagauss Magnetic Field Generation and Related Topics (Santa Fe, July 14–17, 1986), Plenum Press, New York-London (1987), pp. 89–105.

    Google Scholar 

  13. K. Nagayama and T. Mashimo, “Explosive-driven magnetic flux cumulation by the propagation of shock-compressed conductive region in highly porous metal powders,” J. Appl. Phys., 61, No. 10, 4730–4735 (1987).

    Article  ADS  Google Scholar 

  14. K. Nagayama and T. Murakami, “Magnetohydrodynamic study of the interaction of magnetic flux with high-pressure shock waves in metal powder,” in: H. Gronig (ed.), Shock Tubes and Waves, Proc. of the 16th Int. Symp. on Shock Tubes and Shock Waves (Aachen, July 26–31, 1987), Aachen (1988), pp. 881–887.

  15. K. Nagayama, “Shock Wave interaction in solid materials,” in: A. B. Sawaoka (ed.), Shock Waves in Materials Science, Springer-Verlag (1993), pp. 195–224.

  16. A. M. Trubachev, “MC generators. Selection of optimal experimental conditions,” J. Appl. Mech. Tech. Phys., 36, No. 3, 336–340 (1995).

    Article  ADS  Google Scholar 

  17. A. M. Trubachev and A. M. Ryabchun, “MC generator with a shock-wave cascade,” J. Appl. Mech. Tech. Phys., 37, No. 4, 470–475 (1996).

    Article  ADS  Google Scholar 

  18. E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, and A. M. Trubachev, “Magnetic-field compression by shock-induced conduction waves in high-porosity materials,” J. Appl. Mech. Tech. Phys., 37, No. 6, 785–793 (1996).

    Article  ADS  Google Scholar 

  19. E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, and A. M. Trubachev, “Shock-wave cumulation of the magnetic field. Ultimate capabilities of the method,” in: V. K. Chernyshev, V. D. Selemir, and L. N. Plyashkevich (eds.), Megagauss and Megaampere Pulsed Technology and Applications, Proc. 7th Int. Conf. on Generation of Megagauss Magnetic Fields and Related Experiments, Vol. 1, Inst. Exp. Phys., Sarov (1997), pp. 121–128.

    Google Scholar 

  20. A. A. Barmin, O. A. Mel’nik, A. B. Prishchepenko, et al., “Losses of electromagnetic energy during compression of the magnetic field by a shock wave of the second kind,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 166–170 (1988).

  21. J. Tyl and E. Wlodarczyk, “A new method for isentropic compression of materials,” J. Tech. Phys., 32, No. 2, 187–197 (1991).

    Google Scholar 

  22. A. L. Velikovich, “Ultimate capabilities of the method of magnetic field compression by converging shock waves,” Zh. Tekh. Fiz., 62, No. 6, 47–59 (1992).

    Google Scholar 

  23. A. A. Barmin and A. B. Prishepenko, “Compression of magnetic field in a single crystal by a strong converging ionizing shock wave,” in: M. Cowan and R. B. Spielman (eds.), Megagauss Magnetic Field Generation and Pulsed Power Application, Proc. of the Sixth Int. Conf. on Megagauss Magnetic Field Generation and Related Topics, Nova Sci. Publ., New York (1994), p. 35.

    Google Scholar 

  24. H. Almstrem, G. Bjarnholt, S. M. Golberg, and M. A. Liberman, “Methods of generation of superstrong pulsed magnetic fields,” in: V. K. Chernyshev, V. D. Selemir, and L. N. Plyashkevich (eds.), Megagauss and Megaampere Pulsed Technology and Applications, Proc. 7th Int. Conf. on Generation of Megagauss Magnetic Fields and Related Experiments, Vol. 1, Inst. Exp. Phys., Sarov (1997), pp. 146–153.

    Google Scholar 

  25. H. Almstrem, G. Bjarnholt, S. M. Golberg, and M. A. Liberman, “Numerical simulation of magnetic field compression by a converging cylindrical ionizing shock wave,” ibid., pp. 465–471.

    Google Scholar 

  26. G. Bjarnholt, S. M. Golberg, and S. E. Nyholm, “Compression of the magnetic flux by imploding ionizing shock waves,” in: Proc. Pulse Power Conf. (1997), pp. 1497–1502.

  27. A. A. Barmin and M. S. Rumnenko, “Compression of the magnetic field by a strong ionizing shock wave in a Csl single crystal,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 146–158 (2002).

  28. B. M. Novac, I. R. Smith, D. F. Rankin, and M. Hubbard, “An insulator-metallic phase transition cascade for improved electromagnetic flux-compression in θ-pinch geometry,” IEEE Trans. Plasma Sci., 32, No. 5, 1960–1965 (2004).

    Article  ADS  Google Scholar 

  29. S. D. Gilev, “Electrical conductivity of metal powders under shock compression,” Combust., Expl., Shock Waves, 41, No. 5, 599–609 (2005).

    Article  Google Scholar 

  30. S. D. Gilev, “Electrode gauge as an instrument for studying shock compression and metallization of the substance,” Combust., Expl., Shock Waves, 43, No. 5, 598–606 (2007).

    Article  Google Scholar 

  31. R. F. Trunin, G. V. Simakov, Yu. I. Sutulov, et al., “Compressibility of porous metals in shock waves,” Zh. Éksp. Teor. Fiz., 96, No. 3(9), 1024–1038 (1989).

    Google Scholar 

  32. A. A. Bakanova, I. P. Dudoladov, and Yu. N. Sutulov, “Shock compressibility of porous tungsten, molybdenum, copper, and aluminum in the low pressure domain,” J. Appl. Mech. Tech. Phys., 15, No. 2, 241–245 (1974).

    Article  ADS  Google Scholar 

  33. R. G. McQueen, S. P. Marsh, J. W. Taylor, et al., “The equations of state of solids from shock-wave studies,” in: R. Kinslow (ed.), High Velocity Impact Phenomena, Academic Press, New York (1971).

    Google Scholar 

  34. D. Saumon, “Cumulative processes. Self-similar solutions,” in: P. Caldirola and H. Knoepfel (eds.), Physics of High Energy Density, Academic Press, New York (1971).

    Google Scholar 

  35. B. M. Novac, I. R. Smith, S. E. Goh, M. C. Enache, K. Gregory, P. Senior, and H. R. Stewardson, “A novel flux compression/dynamic transformer technique for high-voltage pulse generation,” IEEE Trans. on Plasma Sci., 28, No. 5, 1356–1361 (2000).

    Article  ADS  Google Scholar 

  36. B. M. Novac, I. R. Smith, and S. E. Goh, “Monitoring the velocity of the insulator-metallic phase transition in aluminium powder under shock loading,” J. Phys., D: Appl. Phys., 34, 174–176 (2001).

    Article  ADS  Google Scholar 

  37. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances [in Russian], Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Gilev.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 2, pp. 106–116, March–April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilev, S.D. Experimental study of shock-wave magnetic cumulation. Combust Explos Shock Waves 44, 218–227 (2008). https://doi.org/10.1007/s10573-008-0029-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0029-6

Key words

Navigation