Skip to main content
Log in

Theoretical and numerical study of detonation processes in gas suspensions with aluminum particles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Some analytical and numerical results obtained by the authors in the field of mechanics of reactive heterogeneous media at the Institute of Theoretical and Applied Mechanics of the Siberian Division of the Russian Academy of Sciences during several years are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Strauss, “Investigation of the detonation of aluminum powder-oxygen mixtures,” AIAA J., 6, No. 12, 1753–1761 (1968).

    Article  ADS  Google Scholar 

  2. A. J. Tulis and J. R. Selman, “Detonation tube studies of aluminum particles dispersed in air,” in: Proc. 19th Int. Symp. on Combustion (Haifa, August 8–13, 1982), The Combustion Inst., Pittsburgh (1982), pp. 652–662.

    Google Scholar 

  3. A. A. Borisov, B. A. Khasainov, B. Veyssiere, et al., “Detonation of aluminum suspensions in air and oxygen,” Khim. Fiz., 10, No. 2, 250–272 (1991).

    Google Scholar 

  4. B. Veyssiere, R. Bourinnes, and N. Manson, “Detonations des melanges biphasiques ethylene-oxygene-azote-particules d’aluminum,” C. R. Akad. Sci., Ser. B, 290, 147–149 (1980).

    Google Scholar 

  5. Y. K. Pu and K. Yill, “Transition to detonation in aluminum dust-air mixtures under weak ignition conditions,” in: Proc. of the 16th Int. Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), University of Mining and Metallurgy, AGH, Cracow, Poland (1997), pp. 303–307.

    Google Scholar 

  6. A. E. Medvedev, A. V. Fedorov, and V. M. Fomin, “Description of ignition and combustion of gas mixtures with solid particles by methods of the mechanics of continuous media,” Combust., Expl., Shock Waves, 20, No. 2, 127–132 (1984).

    Article  Google Scholar 

  7. T. A. Eremeeva, A. E. Medvedev, A. V. Fedorov, and V. M. Fomin, “On the theory of ideal and nonideal detonation of aerosuspensions,” Preprint No. 37-86, Inst. Theor. Appl. Mech., Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1986).

    Google Scholar 

  8. A. V. Fedorov, “Structure of heterogeneous detonation of aluminum particles dispersed in oxygen,” Combust., Expl., Shock Waves, 28, No. 3, 277–286 (1992).

    Article  Google Scholar 

  9. R. I. Nigmatulin, Dynamics of Multiphase Media, Parts 1 and 2, Hemisphere Publ., New York (1991).

    Google Scholar 

  10. P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, et al., Combustion of Powdered Metals in Active Media [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  11. V. M. Boiko, V. V. Lotov, and A. N. Papyrin, “Ignition of metal powders in reflected shock waves,” Arch. Combust., 8, No. 2, 101–114 (1988).

    Google Scholar 

  12. V. M. Boiko, A. N. Papyrin, and S. V. Poplavskii, “Ignition of gas suspensions of disperse materials behind shock waves,” in: Proc. 1st Int. Colloquium on Explosibility of Industrial Dusts, Part 2, Warsaw (1985), pp. 188–195.

  13. A. A. Borisov, B. E. Gelfand, B. I. Timofeev, et al., “Ignition of dusts behind shock waves,” in: P. Wolanski (ed.), Proc. of the IIIrd Int. School on Explosibility of Industrial Dusts (Turawa, November 5–7, 1982), Turawa (1982), pp. 5–16.

  14. M. W. Beckstead, “Correlating aluminum burning times,” Combust., Expl., Shock Waves, 41, No. 5, 533–546 (2005).

    Article  Google Scholar 

  15. E. L. Dreizin, “On the mechanism of asymmetric aluminum particle combustion,” Combust. Flame, 117, 841–850 (1999).

    Article  Google Scholar 

  16. A. V. Fedorov and T. A. Khmel’, “Types and stability of detonation flows of aluminum particles in oxygen,” Combust., Expl., Shock Waves, 32, No. 2, 181–190 (1996).

    Article  Google Scholar 

  17. A. V. Fedorov and T. A. Khmel’, “Mathematical modeling of detonation of an aluminum dust in oxygen with allowance for velocity nonequilibrium of the particles,” Combust., Expl., Shock Waves, 33, No. 6, 688–694 (1997).

    Google Scholar 

  18. A. V. Fedorov and T. A. Khmel’, “Interaction of detonation and rarefaction waves in aluminum particles dispersed in oxygen,” Combust., Expl., Shock Waves, 33, No. 2, 211–218 (1997).

    Google Scholar 

  19. A. V. Fedorov and T. A. Khmel’, “Determination of nonideal self-sustained detonation regimes of aluminum particles in air,” Combust., Expl., Shock Waves, 34, No. 5, 566–572 (1998).

    Google Scholar 

  20. A. V. Fedorov and E. V. Tetenov, “Initiation of the heterogeneous detonation of aluminum particles dispersed in oxygen,” Combust., Expl., Shock Waves, 28, No. 3, 287–291 (1992).

    Article  Google Scholar 

  21. A. V. Fedorov and T. A. Khmel’, “Numerical simulation of shock-wave initiation of heterogeneous detonation in aerosuspensions of aluminum particles,” Combust., Expl., Shock Waves, 35, No. 3, 288–295 (1999).

    Google Scholar 

  22. A. V. Fedorov and T. A. Khmel’, “Numerical simulation of detonation initiation with a shock wave entering a cloud of aluminum particles,” Combust., Expl., Shock Waves, 38, No. 1, 101–113 (2002).

    Article  Google Scholar 

  23. T. A. Khmel’ and A. V. Fedorov, “Interaction of a shock wave with a cloud of aluminum particles in a channel,” Combust., Expl., Shock Waves, 38, No. 2, 206–214 (2002).

    Article  Google Scholar 

  24. A. V. Fedorov and T. A. Khmel, “Formation of two-dimensional detonation structure in aluminum gas suspension in a channel,” in: G. Roy et al. (eds.), Confined Detonations and Pulse Detonation Engines, Torus Press, Moscow (2003), pp. 141–156.

    Google Scholar 

  25. A. V. Fedorov and T. A. Khmel’, “Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen,” Combust., Expl., Shock Waves, 41, No. 4, 435–448 (2005).

    Article  Google Scholar 

  26. E. A. Afanas’eva and V. A. Levin, “Aluminum-particle ignition and combustion behind shock and detonation waves,” Combust., Expl., Shock Waves, 23, No. 1, 6–11 (1987).

    Article  Google Scholar 

  27. A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys., 49, 357–393 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. P. J. Roache, Computational Fluid Mechanics, Hermosa, Albuquerque (1976).

    Google Scholar 

  29. T. A. Khmel’, “Numerical simulation of two-dimensional detonation flows in a gas suspension of reacting solid particles,” Mat. Model., 16, No. 6, 73–77 (2004).

    Google Scholar 

  30. V. P. Korobeinikov, V. V. Markov, and I. S. Men’shov, “Numerical simulation of shock-wave propagation over an inhomogeneous dust-laden mixture,” Dokl. Akad. Nauk SSSR, 290, No. 4, 816–819 (1986).

    ADS  Google Scholar 

  31. V. P. Korobeinikov, V. V. Markov, and G. B. Sizykh, “Numerical solution of two-dimensional unsteady problems of motion of a combustible dust-laden mixture,” Dokl. Akad. Nauk SSSR, 316, No. 5, 1077–1081 (1991).

    MathSciNet  Google Scholar 

  32. W. Ingignoli, B. Veyssiere, and B. A. Khasainov, “Study of detonation initiation in unconfined aluminum dust clouds,” in: G. Roy et al. (eds.), Gaseous and Heterogeneous Detonations. Science to Applications, ENAS Publishers, Moscow (1999), pp. 337–350.

    Google Scholar 

  33. K. Benkiewicz and A. K. Hayashi, “Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement,” Shock Waves, 13, 385–402 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 6, pp. 126–136, November–December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, A.V., Fomin, V.M. & Khmel’, T.A. Theoretical and numerical study of detonation processes in gas suspensions with aluminum particles. Combust Explos Shock Waves 42, 735–745 (2006). https://doi.org/10.1007/s10573-006-0109-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-006-0109-4

Key words

Navigation