Skip to main content
Log in

Formation of flame ions, clusters, nanotubes, and soot in hydrocarbon flames

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The actual work deals with the present state of research on flame ions, polyaromatic hydrocarbons, nanotubes, fullerenes, and soot particles in premixed flames. Experimental arrangements for detection and quantitative investigation of flame ions are presented. In addition, the influence of ions on flame chemistry and on formation of carbon particles under non-sooting and sooting conditions is discussed. The study also focuses on the formation pathway from flat polyatomic hydrocarbons to fullerenes, nanotubes, and soot particles. In this connection, the features of arched “aromers,” which are high reactive metastable species and leading candidates for soot precursors and fullerene formation, are reported. These aromers seem to be a kind of “switch” capable of producing either fullerenes or soot particles, depending on the reaction conditions. At lower flame temperatures and a high number density of small unsaturated hydrocarbons, bimolecular reactions are favored, and the formation of soot particles exceeds that of fullerenes. It is also shown how the further growth of soot particles can be described, namely, by soot mass growth and by coagulation processes in strong sooting flames. Typical values for soot volume fractions and particle diameters under various reaction conditions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. L. Zhang, S. L. O’Brien, J. R. Heath, et al., “Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot,” J. Phys. Chem., 90, 525 (1986).

    Article  Google Scholar 

  2. F. Haber, “Ueber die Stickoxydbildung bei der Kohlenoxydverbrennung,” Z. Phys. Chem., 337–388 (1909).

  3. Ph. Gerhardt, S. Löffler, and K. H. Homann, “Polyhedral carbon ions in hydrocarbon flames,” Chem. Phys. Lett., 137, 306 (1987).

    Article  ADS  Google Scholar 

  4. S. Löffler, Ph. Löffler, P. Weilmuenster, and K. H. Homann, “Growth of large ionic polycyclic aromatic hydrocarbons in sooting flames,” in: H. Bockhorn (ed.), Soot Formation in Combustion, Springer Verlag (1992), pp. 66–82.

  5. J. B. Howard, J. T. Mc Kinnon, Y. Makarovsky, et al., “Fullerenes C60 and C70 in flames,” Nature, 352, 139 (1991).

    Article  ADS  Google Scholar 

  6. K. H. Homann, “Fulleren-und Russbildung-Wege zu grossen Teilchen in Flammen,” Angew. Chem., 110, 2572–2590 (1998).

    Article  Google Scholar 

  7. P. Weilmuenster, A. Keller, and K. H. Homann, “Large molecules, radicals, ions, and small soot particles in fuel-rich hydrocarbon flames. Part I: Positive ions of polycyclic aromatic hydrocarbons (PAH) in low-pressure premixed flames of acetylene and oxygen,” Combust. Flame, 16, 63–83 (1999).

    Google Scholar 

  8. Th. Baum, “Positive Ionen in 1.3-Butadien-Niederdruckflammen,” Ph. D. Thesis, Darmstadt (1996).

  9. R. Vander Wal, “Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes,” Chem. Phys. Lett., 324, 217–223 (2000).

    Article  ADS  Google Scholar 

  10. W. Merchan-Merchan, A. V. Saveliev, L. A. Kennedy, and A. A. Fridman, “Formation of carbon nanotubes in counter-flow oxy-methane diffusion flames without catalysts,” Chem. Phys. Lett., 354, 20–24 (2002).

    Article  ADS  Google Scholar 

  11. J. B. Howard, “Fullerenes formation in flames, in: Proc. of the 24th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1992), pp. 933–946.

    Google Scholar 

  12. H. Böhm, D. Hesse, H. Jander, et al., “The influence of pressure and temperature on soot formation in premixed flames,” in: Proc. of the 22nd Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1988), pp. 403–411.

    Google Scholar 

  13. H. Böhm, Chr. Feldermann, Th. Heidermann, et al., “Soot formation in premixed C2H4-air flames for pressure up to 100 atm,” in: 24th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1992), pp. 991–998.

    Google Scholar 

  14. R. A. Dobbins and C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Appl. Opt., 30, No. 33, 4747 (1991).

    Article  ADS  Google Scholar 

  15. Ue. Oe. Koeylue, “Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity,” Combust. Flame, 109, 488–500 (1997).

    Article  Google Scholar 

  16. W. Stahlberg, “Aggregatenbildung der Russteilchen in Kohlenwassersto./Luftflammen in einem Druckbereich von ein bis fuenf atm,” Ph. D. Thesis, Göttingen (2004).

  17. W. H. Dalzell and A. F. Sarofim, “Optical constants of soot and their application to heat flux calculations,” Trans. ASME, J. Heat Transfer, 91, 100 (1969).

    Google Scholar 

  18. A. G. Gaydon and H. G. Wolfhard, Flames: Their Structure, Radiation, and Temperature, Chapman and Hall, New York (1978).

    Google Scholar 

  19. Ph. Gerhardt, S. Löffler, and K. H. Homann, “The formation of polyhedral carbon ions in fuel-rich acetylene and benzene flames,” in: Proc. of the 22nd Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1988), pp. 395–401.

    Google Scholar 

  20. A. Keller, R. Kovacs, and K. H. Homann, “Large molecules, ions, radicals and small soot particles in fuel-rich hydrocarbon flames,” Phys. Chem. Chem. Phys., 2, 1667–1675 (2000).

    Article  Google Scholar 

  21. M. J. Height, J. B. Howard, and J. W. Tester, “Flame synthesis of single-walled carbon nanotubes,” in: Proc. of the 30 th Symp. (Int.) on Combustion, The Combust. Inst., Pittsburgh (2004), pp. 2537–2543.

    Google Scholar 

  22. S. Iijima, “The 60-carbon cluster has been revealed!” J. Phys. Chem., 91, 3466 (1987).

    Article  Google Scholar 

  23. W. Kraetschmer, L. D. Lamb, K. Fostiropoulos, and D. Huffmann, “Solid C60: A new form of carbon,” Nature, 347, 354 (1990).

    Article  ADS  Google Scholar 

  24. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (eds.), Carbon Nanotubes, Springer Verlag (2001).

  25. M. Boenig, Chr. Feldermann, H. Jander, et al., “Soot formation in premixed C2H4 flat flames at elevated pressure,” in: 23nd Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1990), pp. 1581–1587.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 6, pp. 82–88, November–December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jander, H., Wagner, H.G. Formation of flame ions, clusters, nanotubes, and soot in hydrocarbon flames. Combust Explos Shock Waves 42, 696–701 (2006). https://doi.org/10.1007/s10573-006-0103-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-006-0103-x

Key words

Navigation