Skip to main content
Log in

Recent progress in modeling solid propellant combustion

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Tremendous progress has been achieved in the last ten years with respect to modeling the combustion of solid propellants. The vastly increased performance of computing capabilities has allowed utilization of calculation approaches that were previously only conceptual. The paper will discuss three areas of emphasis: first, numerical modeling of premixed flames using detailed kinetic mechanisms; second, development of packing models to calculate a geometrical distribution of particles simulating a heterogeneous solid propellant; and finally, calculation of diffusion same effects that are critical in the combustion of AP/hydrocarbon solid propellants.

The capability of modeling premixed combustion using detailed kinetic mechanisms has been evolving and successfully applied to solid propellant ingredients based on a one-dimensional approach. Much of the early work was performed at Novosibirsk. The approach allows calculating the burning rate as a function of pressure but also the temperature sensitivity and spatial distributions of temperature and species concentrations. Generalized mechanisms have been developed and applied to many ingredients such as HMX, GAP, RDX, NG, AP, etc. The gas-phase kinetic mechanisms seem to represent the chemistry of these monopropellants and pseudo-propellants consistently well. The burning rates of these monopropellants vary by almost an order of magnitude but are essentially independent of the flame temperature. Various model calculations agree reasonably well with available experimental data.

Recent work in the USA has been aimed at describing the geometrical packing of a solid propellant. These models represent significant progress toward such a description. Combining the packing model with a realistic flame model is still a significant challenge. Preliminary results are encouraging, but obviously further work is needed. Also, fundamental calculation of two-dimensional diffusion flames, incorporating realistic kinetics has progressed significantly. Recent results show encouraging promise toward simulating the minute detail involved in determining the burning rates of AP containing propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADN:

ammonium dinitramide

AMMO:

3-azidomethyl-3-methyl oxetane

AP:

ammonium perchlorate

BAMO:

3,3′-bis(azidomethyl)oxetane

BTTN:

1,2,4-butanetriol trinitrate

CTPB:

carboxyl-terminated polybutadiene

GAP:

glycidyl azide polymer

HTPB:

hydroxyl-terminated polybutadiene

HMX:

cyclotetramethylene tetranitramine

NC:

nitrocellulose

NG:

nitroglycerine

NMMO:

3-nitratomethyl-3-methyl oxetane

PETN:

pentaerythritol tetranitrate

PGN:

polyglycidyl nitrate

PVN:

polyvinyl nitrate

RDX:

cyclotrimethylene trinitramine

TEGDN:

triethylene glycol dinitrate

TMETN:

trimethylolethane trinitrate

References

  1. M. W. Beckstead, J. E. Davidson, and Q. Jing, “A comparison of solid monopropellant combustion and modeling,” AIAA Paper No. 97-0586 (1997).

  2. J. E. Davidson and M. W. Beckstead, “Improvements to steady-state combustion modeling of cyclotrimethylenetrinitramine,” J. Propul. Power, 13, No. 3, 375–383 (1997).

    Google Scholar 

  3. Y. C. Liau and V. Yang, “Analysis of RDX Monopropellant combustion with two-phase subsurface reactions,” J. Propul. Power, 11, No. 4, 729–739 (1995)

    Google Scholar 

  4. A. Zenin, “HMX and RDX: Combustion mechanism and influence on modern double-base propellant combustion,” ibid., pp. 752–758.

  5. N. E. Ermolin and V. E. Zarko, “Investigation of the properties of a kinetic mechanism describing the chemical structure of RDX flames. I. Role of individual reactions and species,” Combust., Expl., Shock Waves, 37, No. 2, 123–147 (2001).

    Article  Google Scholar 

  6. M. W. Beckstead, R. L. Derr, and C. F. Price, “A model of composite solid-propellant combustion based on multiple flames,” AIAA J., 8, No. 12, 2200–2207 (1970).

    ADS  Google Scholar 

  7. M. S. Miller, “In search of an idealized model of homogeneous solid propellant combustion,” Combust. Flame, 46, 51–73 (1982).

    Article  Google Scholar 

  8. L. K. Gusachenko, V. E. Zarko, V. Ya. Zyryanov, and V. P. Bobryshev, Modeling the Combustion Processes in Solid Propellants [in Russian], Nauka, Novosibirsk (1985); see also L. K. Gusachenko and V. E. Zarko, “Analysis of contemporary models of steady state combustion of composite solid fuels,” Combust., Expl., Shock Waves, 22, No. 6, 643–653 (1986).

    Google Scholar 

  9. M. W. Beckstead and K. P. McCarty, “Calculated combustion characteristics of nitramine monopropellants,” in: Proc. 13th JANNAF Combustion Meeting, Vol. I (1976), pp. 57–68.

    Google Scholar 

  10. G. M. Knott, M. Q. Brewster, and T. L. Jackson, “Simplified modeling of composite propellant combustion with finite Peclet number,” in: 35th JANNAF Combustion Subcommittee Meeting, CPIA Pub. No. 680, Vol. I (1998), pp. 655–669.

    Google Scholar 

  11. J. Buckmaster, T. L. Jackson, and J. Yao, “An elementary discussion of propellant flame geometry,” Combust. Flame, 117, 541–552 (1999).

    Article  Google Scholar 

  12. S. Kochevets, J. Buckmaster, and T. L. Jackson, “Random propellant packs and the flames they support,” in: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Huntsville July 16–19, 2000), AIAA Paper No. 2000-3461 (2000)

  13. A. Hegab et al., “The burning of periodic sandwich propellants,” ibid., AIAA Paper No. 2000-3459 (2000).

  14. T. L. Jackson et al., “The burning of 3D random-pack heterogeneous propellants,” in: 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Salt Lake City, UT, July 8–11, 2001), AIAA Paper No. 2001-3952 (2001).

  15. G. M. Knott, T. L. Jackson, and J. Buckmaster, “Random packing of heterogeneous propellants,” AIAA J., 39, No. 4, 678–686 (2001).

    ADS  Google Scholar 

  16. X. Wang, T. L. Jackson, and L. Massa, “Numerical simulation of heterogeneous propellant combustion by a level set method,” J. Combust. Theory Model., 8, 227–254 (2004).

    Article  ADS  Google Scholar 

  17. M. D. Smooke, R. A. Yetter, T. P. Parr, and D. M. Hanson-Parr, “Modeling two-dimensional ammonium perchlorate diffusion flames,” in: 36th JANNAF Combustion Meeting, CPIA Publ. No. 691, Vol. I (1999), pp. 359–368.

    Google Scholar 

  18. W. Cai and V. A. Yang, “Model of AP/HTPB composite propellant combustion,” in: 38th Aerospace Sciences Meeting and Exhibit (Reno, Jan. 10–13, 2000), AIAA Paper No. 2000-0311 (2000).

  19. S. A. Felt and M. W. Beckstead, “A Model of the AP/HTPB diffusion flame,” in: 39th JANNAF Combustion Meeting (2003).

  20. L. Massa, T. L. Jackson, and M. Short, “Numerical solution of three-dimensional heterogeneous solid propellants,” J. Combust. Theory Model., 7, 579–602 (2003).

    Article  ADS  Google Scholar 

  21. J. J. Cor and M. R. Branch, “Structure and chemical kinetics of flames supported by solid propellant combustion,” J. Propul. Power, 11, No. 4, 704–716 (1995).

    Google Scholar 

  22. J. A. Miller and C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Progr. Energ. Combust. Sci., 15, No. 4, 287–338 (1987).

    Article  Google Scholar 

  23. R. J. Kee, F. M. Rupley, and J. A. Miller, “CHEMKIN II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics,” Sandia National Laboratories, Report No. SAND89-8009 (1989).

  24. R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, “A fortran program for modeling steady, laminar, one-dimensional, premixed flames,” Sandia National Laboratories, Report No. SAND85-8240 (1989).

  25. W. W. Erikson and M. W. Beckstead, “Modeling unsteady monopropellant combustion with full chemical kinetics,” AIAA Paper No. 98-0804 (1998).

  26. W. W. Erikson and M. W. Beckstead, “Modeling pressure and heat flux responses of nitramine monopropellants with detailed chemistry,” AIAA Paper No. 99-2498 (1999).

  27. V. Yang and Y. C. Liau, “A time-accurate analysis of RDX monopropellant combustion with detailed chemistry,” in: 32nd JANNAF Combustion Meeting, CPIA Publ. No. 631, Vol. I (1995), pp. 57–68.

    Google Scholar 

  28. Y. C. Liau, E. S. Kim, and V. Yang, “A comprehensive analysis of laser-induced ignition of RDX monopropellant,” Combust. Flame, 13, 1680–1698 (2001).

    Article  Google Scholar 

  29. Y. C. Liau and J. L. Lyman, “Modeling laser-induced ignition of nitramine propellants with condensed and gas-phase absorption,” Combust Sci. Technol, 174, No. 3, 141–171 (2002).

    Google Scholar 

  30. K. V. Meredith and M. W. Beckstead, “Laser-induced ignition modeling of HMX,” in: 39th JANNAF Combustion Meeting (2003).

  31. K. V. Meredith and M. W. Beckstead, “Fast-cookoff modeling of HMX,” ibid.

  32. M. S. Miller and W. R. Anderson, “Energetic-material combustion modeling with elementary gas-phase reactions: a practical approach,” in: V. Yang, T. B. Brill, and Wu-Zhen Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: SolidPropellant Chemistry, Combustion, and Motor Interior Ballistics, Ch. 2.12, AIAA (2000), pp. 504–531.

  33. N. E. Ermolin, O. P. Korobeinichev, A. G. Tereshchenko, and V. M. Fomin, “Kinetic calculations and mechanism definition for reactions in an ammonium perchlorate flame,” Combust., Expl., Shock Waves, 18, No. 2, 180–188 (1982).

    Article  Google Scholar 

  34. N. E. Ermolin, O. P. Korobeinichev, L. V. Kuibida, and V. M. Fomin, “Study of the kinetics and mechanism of chemical reactions in hexogen flames,” Combust., Expl., Shock Waves, 22, No. 5, 544–552 (1986).

    Article  Google Scholar 

  35. A. A. Zenin, “Universal dependence for heat liberation in the k-phase and gas macrokinetics in ballistic powder combustion,” Combust., Expl., Shock Waves, 19, No. 4, 444–446 (1983).

    Article  Google Scholar 

  36. E. B. Washburn, M. W. Beckstead, and M. L. Gross, “Condensed phase model for HMX decomposition,” in: 38th JANNAF Combustion Meeting, CPIA Publ. No. 712, Vol. I (2002), pp. 33–42.

    Google Scholar 

  37. E. B. Washburn and M. W. Beckstead, “Multi-phase effects in the combustion of HMX and RDX,” in: 39th JANNAF Combustion Meeting (2003).

  38. R. A. Yetter, F. L. Dryer, M. T. Allen, and J. L. Gatto, “Development of gas-phase reaction mechanism for nitramine combustion,” J. Propul. Power, 11, No. 4, 683–697 (1995).

    Google Scholar 

  39. K. Prasad, R. A. Yetter, and M. D. Smooke, “An eigenvalue method for computing the burning rates of RDX propellants,” Combust. Sci. Technol., 124, 35–82 (1997).

    Google Scholar 

  40. B. E. Homan, M. S. Miller, and J. A. Vanderhoff, “Absorption diagnostics and modeling investigations of RDX flame structure,” Combust. Flame, 120, 301–317 (2000).

    Article  Google Scholar 

  41. J. E. Davidson and M. W. Beckstead, “A three-phase model of HMX combustion,” in: 26th Symp. (Int.) on Combustion, The Combustion Inst. (1996), pp. 1989–1996.

  42. K. Prasad, R. A. Yetter, and M. D. Smooke, “An eigenvalue method for computing the burning rates of HMX propellants,” Combust. Flame, 115, 406–416 (1998).

    Article  Google Scholar 

  43. E. S. Kim, “Modeling and simulation of laser-induced ignition of RDX monopropellant and steady-state combustion of HMX/GAP pseudo propellant,” Ph. D. Thesis, The Pennsylvania State University (2000).

  44. J. E. Davidson and M. W. Beckstead, “A mechanism and model for GAP combustion,” in: 33rd JANNAF Combustion Meeting, CPIA Publ. No. 653, Vol. II (1996), pp. 91–100.

    Google Scholar 

  45. K. V. Puduppakkam and M. W. Beckstead, “Combustion modeling of glycidyl azide polymer with detailed kinetics,” Combust. Sci. Technol., 177, No. 9, 1661–1697 (2005).

    Article  Google Scholar 

  46. K. V. Puduppakkam, “Modeling the steady-state combustion of solid propellant ingredients with detailed kinetics,” Ph. D. Dissertation, Brigham Young University (2003).

  47. N. E. Ermolin, “Kinetic parameters of overall gas-phase reactions for propellants based on ammonium perchlorate and polybutadiene binder,” Combust., Expl., Shock Waves, 29, No. 4, 508–515 (1993).

    Google Scholar 

  48. Q. Jing, M. W. Beckstead, and M. B. Jeppson, “Influence of AP solid phase decomposition on temperature profile and sensitivity,” AIAA Paper No. 98-0448 (1998).

  49. Y. C. Liau, V. Yang, M. C. Lin, and J. Park, “Analysis of ammonium dinitramide (ADN) combustion with detailed chemistry,” in: 35th JANNAF Combustion Subcommittee Meeting (1998).

  50. C. A. Heller and A. S. Gordon, “Structure of the gas phase combustion region of a solid double base propellant,” J. Phys. Chem., 59, 773–777 (1955).

    Article  Google Scholar 

  51. N. Kubota, “Determination of plateau burning effect of catalyzed double-base propellant,” in: 17th Int. Symp. on Combustion (1979), pp. 1435–1441.

  52. N. Kubota and T. Sonobe, “Combustion mechanism of azide polymer,” Propellants, Explos. Pyrotech., 13, 172–177 (1988).

    Article  Google Scholar 

  53. J. F. Trubert, J. Duterque, and G. Lengellé, “Study of the condensed phase degradation and combustion of glycidyl azide polymer,” in: Energetic Materials, Proc. 30th Int. Annu. Conf. of ICT, Karlsruhe, Germany (1999).

  54. A. A. Zenin and S. V. Finjakov, “Physics of GAP combustion,” in: 38th Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 2000-1032 (2000).

  55. M. W. Beckstead, “Combustion mechanisms of composite solid propellants,” in: 19th JANNAF Combustion Meeting, CPIA Publ. No. 366, Vol. II (1982), pp. 93–100.

    Google Scholar 

  56. J. E. Flanagan, D. O. Woolery, R. L. Kistner, and M. W. Beckstead, “Combustion characteristics of GAP/RDX gumstocks,” in: 24th JANNAF Combustion Meeting, CPIA Publ. No. 476, Vol. III (1987), pp. 29–38.

    Google Scholar 

  57. N. Kubota and T. Sonobe, “Burning rate catalysis of azide/nitramine propellants,” in: Proc. 23rd Int. Symp. on Combustion, The Combustion Inst. (1990), pp. 1331–1337.

  58. C. J. Tang, Y. J. Lee, and T. A. Litzinger, “The chemical and thermal processes of GAP/nitramine pseudo-propellants under CO2 laser heating,” in: 34th JANNAF Combustion Meeting, CPIA Publ. No. 662, Vol. II (1997), pp. 491–504.

    Google Scholar 

  59. Y. C. Liau, V. Yang, and S. T. Thynell, “Modeling of RDX/GAP propellant combustion with detailed chemical kinetics,” in: V. Yang, T. B. Brill, and Wu-Zhen Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Ch. 2.11, AIAA Inc., Reston (2000), pp. 477–500.

    Google Scholar 

  60. K. V. Puduppakkamand M. W. Beckstead, “RDX/GAP pseudo-propellant combustion modeling,” in: 38th JANNAF Combustion Meeting, CPIA Publ. No. 712, Vol. I (2002) pp. 143–156.

    Google Scholar 

  61. E. S. Kim, V. Yang, and Y. C. Liau, “Modeling of HMX/GAP pseudo-propellant combustion,” Combust. Flame, 131, 227–245 (2002).

    Article  Google Scholar 

  62. K. V. Puduppakkam and M. W. Beckstead, “Combustion modeling of RDX/GAP/BTTN pseudo-propellant,” in: 39th JANNAF Combustion Meeting (2003).

  63. M. B. Jeppson, M. W. Beckstead, and Q. Jing, “A kinetic model for the premixed combustion of a fine AP/HTPB composite propellant,” in: AIAA 36th Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 98-0447 (1998)

  64. Y. C. Liau and V. Yang, “On the existence of dark-zone temperature plateau in RDX monopropellant flame,” AIAA Paper No. 97-0589 (1997).

  65. T. B. Brill, M. W. Beckstead, J. E. Flanagan, et al., “Chemical speciation and dynamics in the surface combustion zone of energetic materials,” J. Propul. Power, 18, No. 4, 824–834 (2002).

    Google Scholar 

  66. Y. C. Liau, V. Yang, M. C. Lin, and J. Park, “An improved model of ammonium dinitramide (ADN) combustion with detailed chemistry,” in: 36th JANNAF Combustion Meeting (1999).

  67. B. D. Roos and T. B. Brill, “Thermal decomposition of energetic materials 82. Correlations of gaseous products with the composition of aliphatic nitrate esters,” Combust. Flame, 128, 181–190 (2002).

    Article  Google Scholar 

  68. R. I. Hiyoshi and T. B. Brill, “Thermal decomposition of energetic materials 83. Comparison of the pyrolysis of energetic materials in air versus argon,” Propellants, Expl., Pyrotech., 27, 23–30 (2002).

    Article  Google Scholar 

  69. J. K. Chen and T. B. Brill, “Thermal decomposition of energetic materials 50. Kinetics and mechanism of nitrate ester polymers at high heating rates by SMATCH/FTIR spectroscopy,” Combust. Flame, 85, 479–488 (1991).

    Article  Google Scholar 

  70. T. L. Boggs, “The thermal behavior of RDX and HMX,” in: K. K. Kuo and M. Summerfield (eds.), Progress in Astronautics and Aeronautics, Vol. 90: Fundamentals of Solid Propellant Combustion, Amer. Inst. of Aeronaut. and Astronaut., New York (1984), pp. 121–175.

    Google Scholar 

  71. G. Lengellé, A. Bizot, J. Duterque, and J. F. Trubert, “Steady-state burning of homogeneous propellants,” ibid., Ch. 7, pp. 361–398.

  72. R. A. Fifer, “Chemistry of nitrate ester and nitramine propellants,” ibid., Ch. 4, pp. 177–219.

  73. B. L. Crawford, C. Huggett, and J. J. McBrady, “The mechanism of the burning of double-base propellants,” J. Phys. Colloid Chem., 54, No. 6, 854–862 (1950).

    Article  Google Scholar 

  74. R. E. Wilfong, S. S. Penner, and F. Daniels, “An hypothesis for propellant burning,” ibid., pp. 863–871.

  75. M. Farber, S. P. Harris, and R. D. Srivastave, “Mass spectrometric kinetic studies on several azido polymers,” Combust. Flame, 55, 203–211 (1984).

    Article  Google Scholar 

  76. B. B. Goshgarian, “The mechanism of nitramine and advanced propellant ingredient initial thermochemical decomposition,” AFRPL-TR-82-040, Edwards Air Force Base, Edwards (1982).

    Google Scholar 

  77. J. K. Chen and T. B. Brill, “Thermal decomposition of energetic materials 54. Kinetics and near-surface products of azide polymers AMMO, BAMO and GAP in simulated combustion,” Combust. Flame, 87, 157–168 (1991).

    Article  Google Scholar 

  78. S. Dhar and H. Singh, “Burn rate and catalysis behavior of GAP based CMDB propellants,” in: 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (San Diego, July 10–12, 1995), AIAA Paper No. 95-2586 (1995).

  79. G. Lengellé, B. Fourest, J. C. Godon,and C. Guin, “Condensed phase behavior and ablation rate of fuels for hybrid propulsion,” AIAA Paper No. 93-2413 (1993).

  80. O. P. Korobeinichev, L. V. Kuibida, A. G. Shmakov, and A. A. Paletsky, “GAP decomposition and combustion chemistry studied by molecular beam mass-spectrometry,” in: 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 99-0596 (1999).

  81. Y. Oyumi, “Thermal decomposition of azide polymers,” Propellants, Explos., Pyrotech., 17, 226–231 (1992).

    Article  Google Scholar 

  82. H. Arisawa and T. B. Brill, “Thermal decomposition of energetic materials 71. Structure-decomposition and kinetic relationships in flash of glycidyl azide polymer (GAP),” Combust. Flame, 112, 533–544 (1998).

    Article  Google Scholar 

  83. Y. Haas, Y. B. Eliahu, and S. Welner, “Infrared laser-induced decomposition of GAP,” Combust. Flame, 96, 212–220 (1994).

    Article  Google Scholar 

  84. C.-J. Tang, Y. Lee, and T. A. Litzinger, “Simultaneous temperature and species measurements of the glycidyl azide polymer (GAP) propellant during laser-induced decomposition,” Combust. Flame, 117, 244–256 (1999).

    Article  Google Scholar 

  85. E. Kimura and Y. Oyumi, “Effects of copolymerization ratio of BAMO/NMMO and catalyst on sensitivity and burning rate of HMX propellant,” Propellants, Explos., Pyrotech., 20, 215–221 (1995).

    Article  Google Scholar 

  86. M. Frenklach, T. Bowman, G. Smith, and B. Gardiner, “GRI-MECH 3.0,” Downloaded from http://www.me.berkeley.edu/gri_mech/.

  87. N. E. Ermolin, “Model for chemical reaction kinetics in perchloric acid-ammonia flames,” Combust., Expl., Shock Waves, 31, No. 5, 555–565 (1995).

    Article  Google Scholar 

  88. N. E. Ermolin, O. P. Korobeinichev, V. M. Fomin, and A. A. Chernov, “Study of flame structure for mixed solid fuels based on ammonium perchlorate and polybutadiene rubber,” Combust., Expl., Shock Waves, 28, No. 4, 372–377 (1992).

    Article  Google Scholar 

  89. J. Park and M. C. Lin, “A mass spectrometric study of the NH2 + NO2 reaction,” J. Phys. Chem. A, 101, No. 14, 343–347 (1997).

    Article  Google Scholar 

  90. M. B. Frankel, L. R. Grant, and J. E. Flanagan, “Historical development of glycidyl azide polymer,” J. Propul. Power, 8, 560–563 (1992).

    Google Scholar 

  91. J. Flanagan, D. Woolery, and R. Kistner, “Fundamental studies of azide decomposition and combustion,” AFRPL-TR-86-094 (1986).

  92. N. Kubota, T. Sonobe, A. Yamamoto, and H. Shimizu, “Burning rate characteristics of GAP propellants,” J. Propul. Power, 6, 686–689 (1990).

    Google Scholar 

  93. A. I. Atwood, T. L. Boggs, P. O. Curran, et al., “Burning rate of solid propellant ingredients. P. 1: Pressure and initial temperature effects,” J. Propul. Power, 15, No. 6, 740–747 (1999).

    Google Scholar 

  94. O. P. Korobeinichev, L. V. Kuibida, A. A. Paletsky, and A. G. Shmakov, “Molecular-beam mass spectrometry to ammonium dinitramide combustion chemistry studies,” J. Propul. Power, 14, No. 6, 991–1000 (1998).

    Article  Google Scholar 

  95. T. Parr and D. Hanson-Parr, “RDX/GAP/BTTN propellant flame studies,” Combust. Flame, 127, 1895–1905 (2001).

    Article  Google Scholar 

  96. C. A. Heller and A. S. Gordon, “Structure of the gas phase combustion region of a solid double base propellant,” J. Phys. Chem., 59, 773–777 (1955).

    Article  Google Scholar 

  97. R. L. Foster and R. R. Miller, “The burn rate temperature sensitivity of aluminized and non-aluminized HTPB propellants,” in: JANNAF Propulsion Meeting (Monterey, March 11–13, 1980), CPIA Publ. No. 315, Vol. IV (1981), pp. 667–693.

    Google Scholar 

  98. T. Parr and D. Hanson-Parr, “BTTN flame structure,” in: 38th JANNAF Combustion Subcommittee Meeting, CPIA Publ. No. 712, Vol. I (2002), pp. 43–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 6, pp. 4–24, November–December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckstead, M.W. Recent progress in modeling solid propellant combustion. Combust Explos Shock Waves 42, 623–641 (2006). https://doi.org/10.1007/s10573-006-0096-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-006-0096-5

Key words

Navigation