Skip to main content
Log in

Mechanism of formation of a heated ground layer by an intense air burst

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A mathematical modeling study demonstrated the fundamental possibility of the formation of a heated layer (a meter-long layer of erosion vapor and air with temperatures of a few thousand degrees and a density 20–50 times lower than the normal air density) at the ground surface under the action of the long-distance traveling fireball radiation from an intense explosion at a moderate radiant flux density of about 1 GW/m2 for a time of about 10 msec. The results of the numerical study agree with data from observations of the heated layer effect in nuclear-weapon tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Taylor, “Formation of blast wave by a very intense explosion,” Proc. Roy. Soc. London, 201, No. 8, 159–186 (1950).

    MATH  ADS  Google Scholar 

  2. S. Glasstone and P. J. Dolan (eds.), The Effects of Nuclear Weapons, Washington (1977).

  3. L. I. Sedov, Methods of Similarity and Dimensionality in Mechanics [in Russian], Nauka, Moscow (1967), p. 236.

    Google Scholar 

  4. G. I. Taganov, “Some problems of the hydrodynamics of jet flows,” in: Abstracts of the 3rd All-Union Congress on Theor. Appl. Mech., Moscow (1968), p. 289.

  5. K. E. Gubkin, Propagation of Blast Waves. Mechanics in the USSR for 50 Years [in Russian], Vol. 2, Nauka, Moscow (1970), pp. 289–311.

    Google Scholar 

  6. M. A. Sadovskii and V. V. Adushkin, “Effect of the heated wall layer on shock-wave parameters,” Dokl. Akad. Nauk SSSR, 300, No. 1, 79–83 (1988).

    Google Scholar 

  7. O. M. Belotserkovskii, V. A. Andrushchenko, and Yu. D. Shevelev, Dynamics of Spatial Rotational Flows in an Inhomogeneous Atmosphere. Computational Experiment [in Russian], Yanus, Moscow (2000).

    Google Scholar 

  8. G. N. Lyubimov, V. D. Kuzovlev, V. M. Chapurin, et al., “Air blast wave,” in: Physics of Nuclear Explosions, Vol. 1: Development of an Explosion [in Russian], Nauka, Moscow (1997), pp. 141–158.

    Google Scholar 

  9. B. N. Gordeichik, V. N. Zabavin, and M. D. Shcherbin, “Explosion cloud and dust formations,” ibid, pp. 243–275.

  10. S. A. Zelentsov, V. M. Loborev, and B. A. Shilobreev, “General picture of the development of a ground explosion,” ibid, pp. 11–33.

  11. A. P. Golub’ and I. V. Nemchinov, “Laser plasma in vacuum as an intense source of UV radiation, ” Inzh.-Fiz. Zh., 39, No. 1, 51–81 (1990).

    Google Scholar 

  12. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York (1967).

    Google Scholar 

  13. I. P. Shkarovsky, T. W. Johnston, and M. Bachinski, The Particle Kinetics of Plasmas, Addison-Wesley, Reading (1969).

    Google Scholar 

  14. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  15. A. A. Samarskii and Yu. P. Popov, Difference Schemes of Gas Dynamics [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  16. A. P. Golub’, “Numerical method for solving the radiation transfer equations in one-dimensional problems of radiation gas dynamics,” Zh. Vychisl. Mat. Mat. Fiz., 23, No. 1, 142–151 (1983).

    MathSciNet  Google Scholar 

  17. I. S. Grigor’ev (ed.), Physical Quantities: Handbook [in Russian], Énergoatomizdat, Moscow (1991).

    Google Scholar 

  18. G. S. Romanov, Yu. L. Stankevich, L. K. Stanchits, and K. L. Stepanov, “Thermodynamic properties and spectral and averaged absorption coefficients of multicomponent gases over a broad range of parameters,” Preprint No. 6, Lykov Institute of Heat and Mass Transfer, Minsk (1993).

    Google Scholar 

  19. N. M. Kuznetsov, Thermodynamic Functions and Shock Adiabats of Air at High Temperatures [in Russian], Mashinostroenie, Moscow (1965).

    Google Scholar 

  20. I. V. Avilova, L. M. Biberman, V. S. Vorob’ev, et al., Optical Properties of Hot Air [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  21. G. G. Vilenskya and I. V. Nemchinov, “Flash of absorption of optical quantum generator radiation and its associated gas-dynamic effects,” Dokl. Akad. Nauk SSSR, 186, No. 5, 1048–1051 (1969).

    Google Scholar 

  22. A. P. Golub’ and I. V. Nemchinov, “On the time of plasma formation by the action of laser radiation of various wavelengths on an aluminum obstacle in air,” Kvant. Électronika, 7, No. 8, 1831–1834 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 4, pp. 100–106, July–August, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golub’, A.P. Mechanism of formation of a heated ground layer by an intense air burst. Combust Explos Shock Waves 42, 456–462 (2006). https://doi.org/10.1007/s10573-006-0075-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-006-0075-x

Key words

Navigation