Skip to main content
Log in

Electromotive force for solid-flame combustion of heterogeneous systems in loose and pressed states

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

By an example of condensed 3Zr + 2WO3 and Al + Ni systems, it is demonstrated that the electromotive force of solid-flame combustion measured by probing in loose systems is significantly higher than that in the same systems in a pressed state. An explanation for this phenomenon is offered, based on the difference in electrical conductivity in different zones of the combustion wave in loose and pressed condensed systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lawton and F. Weinberg, Electrical Aspects of Combustion, Clarendon Press, Oxford (1969).

    Google Scholar 

  2. E. V. Levakov, S. A. Peleskov, and V. P. Sorokin, “New method for registering the self-oscillatory combustion regime,” in: Combustion of Condensed and Heterogeneous Systems [in Russian], Proc. VI All-Union Symp. on Combustion and Explosion (Alma-Ata, September 23–26, 1980), Inst. Chem. Phys., Acad. of Sci. of the USSR, Chernogolovka (1980), pp. 96–99.

    Google Scholar 

  3. E. B. Levakov, S. A. Peleskov, and V. P. Sorokin, “A thermoelectric method of recording oscillatory combustion,” Combust., Expl., Shock Waves, 17, No. 3, 257–259 (1981).

    Article  Google Scholar 

  4. Yu. S. Petrov, V. D. Shcheglov, and V. V. Maslikhov, “Appearance of thermochemical e.m.f. in some conducting materials,” Combust., Expl., Shock Waves, 18, No. 6, 661–662 (1982).

    Google Scholar 

  5. Yu. G. Morozov, M. V. Kuznetsov, M. D. Nersesyan, and A. G. Merzhanov, “Electrochemical phenomena in the processes of self-propagating high-temperature synthesis,” Dokl. Ross. Akad. Nauk, 351, No. 6, 780–782 (1996).

    Google Scholar 

  6. Yu. G. Morozov, M. V. Kuznetsov, and A. G. Merzhanov, “Electric fields in the processes of self-propagating high-temperature synthesis,” Int. J. SHS, 6, No. 1, 1–13 (1997).

    Google Scholar 

  7. Yu. G. Morozov and M. V. Kuznetsov, “Effect of magnetic fields on combustion electromotive force, ” Combust., Expl., Shock Waves, 35, No. 1, 18–22 (1999).

    Google Scholar 

  8. Yu. G. Morozov and M. V. Kuznetsov, “Origin of the electromotive force due to combustion,” Khim. Fiz., 19, No. 11, 98–104 (2000).

    Google Scholar 

  9. Yu. M. Maksimov, A. I. Kirdyashkin, V. S. Korogodov, and V. L. Polyakov, “Generation and transfer of an electric charge in self-propagating high-temperature synthesis using the Co-S system as an example,” Combust., Expl., Shock Waves, 36, No. 5, 670–673 (2000).

    Google Scholar 

  10. Yu. G. Morozov, “Electrical and magnetic phenomena in self-propagating high-temperature synthesis, ” Doct. Dissertation in Phys.-Math. Sci., Inst. of Struct. Macrokinet. and Mat. Sci., Chernogolovka (2001).

  11. V. F. Proskudin, “Estimating the electromotive force in a condensed-system combustion wave,” Combust., Expl., Shock Waves, 38, No. 2, 176–181 (2002).

    Article  Google Scholar 

  12. V. F. Proskudin, “Measurement of the electromotive force due to combustion in condensed systems, ” Combust., Expl., Shock Waves, 38, No. 5, 571–576 (2002).

    Article  Google Scholar 

  13. A. I. Kirdyashkin, V. L. Polyakov, Yu. M. Maksimov, and V. S. Korogodov, “Specific features of electric phenomena in self-propagating high-temperature synthesis,” Combust., Expl., Shock Waves, 40, No. 2, 180–185 (2004).

    Article  Google Scholar 

  14. Yu. G. Morozov and M. V. Kuznetsov, “Studying the mechanism of heterogeneous combustion of condensed systems by the method of dynamic ionography,” in: Chemical Physics of Combustion and Explosion, Proc. XII Symp. on Combustion and Explosion (Chernogolovka, September 11–15, 2000), Part 1 (2000), pp. 114–115.

  15. V. F. Proskudin, “Some applied aspects of using the combustion-induced electromotive force,” in: Combustion and Explosion Processes in Physical Chemistry and Technologies of Inorganic Materials, Proc. All-Russia Conf., Moscow, June 24–27 (2002), pp. 308–312.

  16. V. F. Proskudin, E. N. Belyaev, V. N. Tarakanov, et al., “Using the electromotive force of condensed system combustion to estimate the parameters of heat transfer through an obstacle,” Combust., Expl., Shock Waves, 38, No. 4, 456–462 (2002).

    Article  Google Scholar 

  17. O. A. Ivashkevich, V. A. Krasitsky, A. I. Lesnikovich, et al., “Liquid-flame combustion II: Some physical and chemical characteristics of the burning process,” Combust. Flame, 110, Nos. 1/2, 113–126 (1997).

    Article  Google Scholar 

  18. Yu. G. Morozov and M. V. Kuznetsov, “Probing measurements of ionization during flame propagation, ” Teplofiz. Vys. Temp., 36, No. 2, 338–340 (1998).

    Google Scholar 

  19. O. K. Kamynina, N. I. Kidin, V. A. Kudryashov, et al., “Ionization in a combustion wave,” Combust., Expl., Shock Waves, 38, No. 4, 446–448 (2002).

    Article  Google Scholar 

  20. V. F. Proskudin, “Temperature measurements at the leading edge of the conducting zone of a condensedsystem combustion wave,” Combust., Expl., Shock Waves, 36, No. 2, 236–239 (2000).

    Google Scholar 

  21. A. G. Merzhanov, Solid-Flame Combustion [in Russian], Inst. Struct. Macrokinet., Chernogolovka (2000), pp. 41–44, 69, 73–75, and 180–181.

    Google Scholar 

  22. A. I. Kirdyashkin, Yu. M. Maksimov, V. D. Kitler, et al., “Electroimpulsive activation of self-propagating high-temperature synthesis in powder mixtures,” Combust., Expl., Shock Waves, 36, No. 4, 540–542 (2000).

    Google Scholar 

  23. V. F. Proskudin, “Recording local fluctuations of physicochemical parameters in a combustion wave in condensed systems,” Combust., Expl., Shock Waves, 35, No. 6, 666–669 (1999).

    Google Scholar 

  24. V. F. Proskudin, “Local fluctuations of physicochemical parameters in condensed system combustion,” Combust., Expl., Shock Waves, 40, No. 5, 571–575 (2004).

    Article  Google Scholar 

  25. A. L. Efros, “Percolation theory,” in: Physical Encyclopedia [in Russian], Vol. 4, Bol’shaya Ross. ’Entsikl., Moscow (1994), pp. 161–163.

    Google Scholar 

  26. V. F. Proskudin, V. A. Golubev, and P. G. Berezhko, “Deformations inside burning specimens,” Combust., Expl., Shock Waves, 33, No. 4, 459–465 (1997).

    Google Scholar 

  27. L. Loeb, Static Electrification, Springer, Berlin (1957).

    Google Scholar 

  28. V. F. Proskudin, “Role of mechanical deformation of burning specimens in relay combustion of gasless systems,” Dokl. Ross. Akad. Nauk, 387, No. 2, 188–190 (2002).

    Google Scholar 

  29. B. G. Popov, V. N. Verevkin, V. A. Bondar’, and V. I. Gorshkov, Static Electricity in Chemical Industry [in Russian], Khimiya, Moscow (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 4, pp. 71–77, July–August, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proskudin, V.F. Electromotive force for solid-flame combustion of heterogeneous systems in loose and pressed states. Combust Explos Shock Waves 42, 430–435 (2006). https://doi.org/10.1007/s10573-006-0072-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-006-0072-0

Key words

Navigation