Skip to main content
Log in

Effect of Strength and Plasticity of the Material and Particle Size of a Porous Medium on Shock-Wave Deformation

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The process of dynamic deformation of shock-loaded cylindrical “porous” samples of lead, tungsten, and the 95% W + 3.5% Ni + 1.5% Fe alloy consisting of particles 0.1–2.5 mm in size is considered. The shock-wave intensity was slightly lower than the values corresponding to complete compaction of the material. The influence of the particle size and material strength and plasticity on the processes considered is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. Ivanov, V. A. Sofronov, and E. S. Tyun’kin, “Axially symmetrical collapse of spalled layers in a cylindrical steel shell,” J. Appl. Mech. Tech. Phys., 25, No.3, 452–454 (1984).

    Article  Google Scholar 

  2. A. G. Ivanov, V. A. Ogorodnikov, and E. S. Tyun’kin, “The behavior of shells under impulsive loading. Small perturbations,” J. Appl. Mech. Tech. Phys., 33, No.6, 871–873 (1992).

    Article  Google Scholar 

  3. A. G. Ivanov, V. A. Ogorodnikov, G. Ya. Karpenko, et al., “Effect of shear strength on the development of instability during the deceleration of imploding cases,” J. Appl. Mech. Tech. Phys., 35, No.4, 639–642 (1994).

    Google Scholar 

  4. V. G. Shchetinin, “Calculation of shock compression and heating of porous media,” Khim. Fiz., 18, No.11, 79–81 (1999).

    Google Scholar 

  5. R. R. Boade, “Compression of porous copper by shock waves,” J. Appl. Phys., 39, No.12, 2689–2694 (1968).

    Google Scholar 

  6. R. R. Boade, “Dynamic compression of porous tungsten,” J. Appl. Phys., 40, No.9, 3781–3785 (1969).

    Article  Google Scholar 

  7. S. I. Bodrenko, Yu. A. Krysanov, and S. A. Novikov, “Propagation of shock waves om foamed polystyrene, ” J. Appl. Mech. Tech. Phys., 20, No.6, 771–775 (1979).

    Article  Google Scholar 

  8. S. P. Kiselev, “On propagation of a shock wave in a porous material upon collision of plates,” Combust., Expl., Shock Waves, 31, No.4, 473–477 (1995).

    Google Scholar 

  9. V. A. Ogorodnikov, A. G. Ivanov, S. V. Erunov, et al., “Shock-wave deformation and fracture of zirconium dioxide ceramics of various fractional composition and porosity,” Combust., Expl., Shock Waves, 37, No.6, 717–722 (2001).

    Google Scholar 

  10. R. R. Boade, “Principal Hugoniot, second-shock Hugoniot, and release behavior of pressed copper powder, ” J. Appl. Phys., 41, No.11, 4542–4551 (1970).

    Article  Google Scholar 

  11. V. N. Mineev, V. P. Pogorelov, A. G. Ivanov, et al., “Unit for investigation of the behavior of materials and constructions with dynamic loads,” Combust., Expl., Shock Waves, 14, No.3, 377–379 (1978).

    Google Scholar 

  12. A. G. Ivanov and S. A. Novikov, “Capacitance gauge method for registration of instantaneous velocity of a moving surface,” Prib. Tekh. Eksp., No. 1, 135–138 (1963).

    Google Scholar 

  13. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York (1967).

    Google Scholar 

  14. P. J. A. Fuller and J. H. Price, “Electrical conductivity of manganin and iron at high pressures,” Nature, 193, 262–268 (1962).

    Google Scholar 

  15. M. N. Pavlovskii and V. V. Komissarov, “Specific features of the phase transformation of bismuth in a rare-faction wave,” Zh. Eksp. Teor. Fiz., 83, No.6, 2146–2151 (1982).

    Google Scholar 

  16. G. S. Doronin and V. P. Stupnikov, “Calculation of shock adiabats of mixtures and porous materials, ” Izv. Sib. Otd. Akad. Nauk SSSR, No. 3, Issue1, 102–106 (1970).

    Google Scholar 

  17. N. M. Voskoboinikov, A. N. Afanasenkov, and V. M. Bogomolov, “Generalized shock adiabat for organic liquids,” Combust., Expl., Shock Waves, 3, No.4, 359–364 (1967).

    Google Scholar 

  18. R. F. Trunin, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances [in Russian], Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov (2001).

    Google Scholar 

  19. V. A. Ogorodnikov, N. P. Khokhlov, S. V. Erunov, et al., “Quasi-static and shock-wave behavior of promising dampers of mechanical and thermal loads,” in: Vth Khariton’s Topical Scientific Readings, Proc. Intern. Conf., Sarov, March 17–21, (2003).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 4, pp. 124–131, July–August, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogorodnikov, V.A., Zhernokletov, M.V., Mikhailov, S.V. et al. Effect of Strength and Plasticity of the Material and Particle Size of a Porous Medium on Shock-Wave Deformation. Combust Explos Shock Waves 41, 474–480 (2005). https://doi.org/10.1007/s10573-005-0058-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-005-0058-3

Key words

Navigation