Skip to main content
Log in

Numerical Simulation of Formation of Cellular Heterogeneous Detonation of Aluminum Particles in Oxygen

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Formation of cellular detonation in a stoichiometric mixture of aluminum particles in oxygen is studied by means of numerical simulation of shock-wave initiation of detonation in a flat and rather wide channel. By varying the channel width, the characteristic size of the cells of regular uniform structures for particle fractions of 1–10 µm is determined. The calculated cell size is in agreement with the estimates obtained by methods of an acoustic analysis. A relation is established between the cell size and the length of the characteristic zones of the detonation-wave structure (ignition delay, combustion, velocity and thermal relaxation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. A. Strechlov, “Gas phase detonations: Recent developments,” Combust. Flame, 12, No.2, 81–101 (1968).

    Article  Google Scholar 

  2. A. A. Vasil’ev, V. V. Mitrofanov, and M. E. Topchiyan, “Detonation waves in gases,” Combust., Expl., Shock Waves, 23, No.5, 605–623 (1987).

    Google Scholar 

  3. E. Oran, “The structure of propagating detonation,” in: G. Roy et al. (eds.), Gaseous and Heterogeneous Detonations, ENAS, Moscow (1999), pp. 97–120.

    Google Scholar 

  4. M. A. Nettleton, “Recent work on gaseous detonations,” Shock Waves, 12, No.1, 3–12 (2002).

    Article  Google Scholar 

  5. K. I. Shchelkin and Ya. K. Troshin, Gas-Dynamics of Combustion [in Russian], Izd. Akad. Nauk SSSR, Moscow (1963).

    Google Scholar 

  6. V. V. Mitrofanov, Theory of Detonation [in Russian], Novosibirsk Univ., Novosibirsk (1982).

    Google Scholar 

  7. A. A. Vasil’ev and Yu. A. Nikolaev, “Model of the nucleus of a multifront gas detonation,” Combust., Expl., Shock Waves, 12, No.5, 667–674 (1976).

    Google Scholar 

  8. D. Desbordes, “Transmission of overdriven plane detonations: Critical diameter as a function of cell regularity and size,” in: Progress in Astronautic and Aeronautic, Vol. 114: Dynamics of Explosions, AIAAInc., NewYork (1988), pp. 170–185.

    Google Scholar 

  9. H. O. Barthel, “Predicted spacings in hydrogen-oxygen-argon detonations,” Phys. Fluids, 17, No.8, 1547–1553 (1974).

    Article  Google Scholar 

  10. J. E. Shepherd, “Chemical kinetics of hydrogen-air-diluent detonations,” in: Progress in Astronautic and Aeronautic, Vol. 106: Dynamics of Explosions, AIAA Inc., New York (1985), pp. 263–293.

    Google Scholar 

  11. A. I. Gavrikov, A. A. Efimenko, and S. B. Dorofeev, “A model for detonation cell size prediction from chemical kinetics,” Combust. Flame, 120, 19–33 (2000).

    Article  Google Scholar 

  12. B. A. Khasainov and B. Veyssiere, “Initiation of detonation regimes in hybrid two-phase mixtures,” Shock Waves, 6, 9–15 (1996).

    Article  Google Scholar 

  13. B. Veyssiere and W. Ingignoli, “Existence of the detonation cellular structure in two-phase hybrid mixtures,” Shock Waves, 12, 291–299 (2003).

    Article  Google Scholar 

  14. W. Ingignoli, B. Veyssiere, and B. A. Khasainov, “Study of detonation initiation in unconfined aluminum dust clouds,” in: G. Roy et al. (eds.), Gaseous and Heterogeneous Detonations, ENAS, Moscow (1999), pp. 337–350.

    Google Scholar 

  15. F. Zhang and H. Gronig, “Transition and structure of dust detonations,” in: A. A. Borisov (ed.), Dynamic Structure of Detonation in Gaseous and Dispersed Media, Kluwer Academic Publ. (1991), pp. 157–213.

  16. B. A. Khasainov, B. Veyssiere, and W. Ingignoli, “Numerical simulation of detonation cell structure in hydrogen-air mixture loaded by aluminum particles,” in: G. Roy et al. (eds.), High-Speed Deflagration and Detonation, Fundamental and Control, ELEX-KM, Moscow (2001), pp. 163–174.

    Google Scholar 

  17. K. Benkiewicz and A. K. Hayashi, “Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement,” Shock Waves, 13, 385–402 (2003).

    Article  Google Scholar 

  18. A. A. Borisov, B. A. Khasainov, B. Veyssiere, et al., “Detonation of aluminum suspensions in air and oxygen,” Khim. Fiz., 10, No.2, 250–272 (1991).

    Google Scholar 

  19. M. Nikolis, D. N. Williams, and L. Bauwens, “Simulation of detonation cells in wide channel,” in: G. Roy et al. (eds.), Gaseous and Heterogeneous Detonations, ENAS, Moscow (1999), pp. 153–162.

    Google Scholar 

  20. L. Hemeryck, M. N. Lefebre, and P. J. Van Tiggelen, “Numerical investigation of transient detonation waves,” in: G. Roy et al. (eds.), High-Speed Deflagration and Detonation. Fundamental and Control, ELEX-KM, Moscow (2001), pp. 81–96.

    Google Scholar 

  21. W. A. Strauss, “Investigation of the detonation of aluminum powder-oxygen mixtures,” AIAA J., 6, No.12, 1753–1761 (1968).

    Google Scholar 

  22. A. E. Eremeeva, A. V. Medvedev, A. V. Fedorov, and V. M. Fomin, “On the theory of ideal and nonideal detonation of aerosuspensions,” Preprint No. 37-86, Inst. Theor. Appl. Mech., Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1986).

    Google Scholar 

  23. A. V. Fedorov, “Structure of heterogeneous detonation of aluminum particles dispersed in oxygen,” Combust., Expl., Shock Waves, 28, No.3, 277–286 (1992).

    Google Scholar 

  24. A. V. Fedorov, V. M. Fomin, and T. A. Khmel’, “Nonequilibrium model of steady detonations in aluminum particle-oxygen suspensions,” Shock Waves, 9, No.5, 313–318 (1999).

    Article  Google Scholar 

  25. A. V. Fedorov and T. A. Khmel’, “Numerical simulation of shock-wave initiation of heterogeneous detonation in aerosuspensions of aluminum particles,” Combust., Expl., Shock Waves, 35, No.3, 288–295 (1999).

    Google Scholar 

  26. T. A. Khmel’and A. V. Fedorov, “Numerical simulation of detonation initiation with a shock wave entering a cloud of aluminum particles,” Combust., Expl., Shock Waves, 38, No.1, 101–108 (2002).

    Google Scholar 

  27. T. A. Khmel’and A. V. Fedorov, “Interaction of a shock wave with a cloud of aluminum particles in a channel,” Combust., Expl., Shock Waves, 38, No.2, 206–214 (2002).

    Google Scholar 

  28. E. L. Dreizin, “On the mechanism of asymmetric aluminum particle combustion,” Combust. Flame, 117, 841–850 (1999).

    Article  Google Scholar 

  29. V. M. Boiko, V. P. Kiselev, S. P. Kiselev, et al., “Interaction of a shock wave with a cloud of particles,” Combust., Expl., Shock Waves, 32, No.2, 191–203 (1996).

    Google Scholar 

  30. A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comp. Phys., 49, No.3, 357–393 (1983).

    Article  Google Scholar 

  31. P. J. Roache, Computational Fluid Mechanics, Hermosa, Albuquerque (1976).

    Google Scholar 

  32. T. A. Khmel’, “Numerical simulation of two-dimensional detonation flows in a gas suspension of reacting solid particles,” Mat. Model., 16, No.6, 73–77 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 4, pp. 84–98, July–August, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, A.V., Khmel’, T.A. Numerical Simulation of Formation of Cellular Heterogeneous Detonation of Aluminum Particles in Oxygen. Combust Explos Shock Waves 41, 435–448 (2005). https://doi.org/10.1007/s10573-005-0054-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-005-0054-7

Key words

Navigation