Skip to main content
Log in

Effect of an Electrostatic Field on Self-Propagating High-Temperature Synthesis of Manganese Ferrite

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Using the synthesis of manganese ferrite as an example, it is shown that an electric field causes a significant change in the parameters of heterogeneous combustion, depending on the field strength and application direction. The possible factors determining the end burning of the starting mixture in the applied electric field are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. M. Maksimov, V. I. Itin, V. K. Smolyakov, et al., “SHS in electric and magnetic fields,” Int. J. SHS, 10, No.7, 295–331 (2001).

    Google Scholar 

  2. Z. A. Munir, “Field effects in self-propagating solid-state reactions,” Z. Physik. Chemie, 207, Nos.1–2, 39–57 (1998).

    Google Scholar 

  3. Z. A. Munir, “The effect of external electric fields on the nature and properties of materials synthesized by self-propagation combustion,” Mater. Sci. Eng., A287, No.2, 127–137 (2000).

    Google Scholar 

  4. J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, “Enhanced growth of intermetallic phases in the Ni-Ti system by current effects,” Acta Materialia, 51, 4487–4495 (2003).

    Article  Google Scholar 

  5. N. I. Kidin and I. A. Filimonov, “Self-propagating high-temperature synthesis as a method for producing composite materials under conditions of Joule energy dissipation,” Mekh. Kompoz. Mater., No. 6, 1106–1112 (1990).

    Google Scholar 

  6. N. I. Kidin and I. A. Filimonov, “An SHS process in an external electric field,” Int. J. SHS, 1, No.4, 513–519 (1992).

    Google Scholar 

  7. Yu. G. Morozov, M. V. Kuznetsov, and A. G. Merzhanov, “Electric fields in the processes of self-propagating high-temperature synthesis,” Int. J. SHS, 6, No.1, 1–13 (1997).

    Google Scholar 

  8. Yu. G. Morozov, M. V. Kuznetsov, and A. G. Merzhanov, “Nonthermal effect of an electric field on self-propagating high-temperature synthesis,” Dokl. Ross. Akad. Nauk, 352, No.6, 771–773 (1997).

    Google Scholar 

  9. I. M. Kotin, “Influence of a constant electric field on SHS wave,” Combust., Expl., Shock Waves, 30, No.5, 626–629 (1994).

    Google Scholar 

  10. I. M. Kotin, “Efect of a dc electric field on the SHS combustion wave. Model of a medium consisting of interacting diffusion pairs,” Inzh.-Fiz. Zh., 70, No.5, 790–794 (1997).

    Google Scholar 

  11. A. V. Komarov, Yu. G. Morozov, P. B. Avakyan, et al., “Influence of a dc magnetic field on structuration and parameters of self-propagating high-temperature synthesis of strontium hexaferrite,” Int. J. SHS, 3, No.3, 207–212 (1994).

    Google Scholar 

  12. M. V. Kuznetsov, S. M. Busurin, Y. G. Morozov, and I. P. Parkin, “Heterogeneous combustion in electrical and magnetic fields: modification of combustion parameters and products,” Phys. Chem. Chem. Phys., No. 5, 2291–2296 (2003).

    Google Scholar 

  13. L. M. Letyuk, A. M. Balbashov, and D. G. Krutogin, Production Process of Materials for Magnetoelectronics [in Russian], Metallurgiya, Moscow (1994).

    Google Scholar 

  14. M. A. Vishkareva, V. V. Levina, D. I. Ryzhonkov, et al., “Carbon-thermal reduction of metal oxides on exposure a noncontact electric field,” Izv. Vyssh. Uchebn. Zaved., Chern. Metallurg., No. 9, 1–3 (1996).

  15. E. M. Zingel,’ “Electric-field effect on the thermolysis rate of KMnO4,” Zh. Fiz. Khim., 57, No.3, 766–768 (1983).

    Google Scholar 

  16. A. A. Baranov, V. F. Buldakov, and G. G. Shelukhin, “Influence of the electricfield on the combustion rate of a heterogeneous condensed system,” Combust., Expl., Shock Waves, 12, No.5, 618–620 (1976).

    Google Scholar 

  17. A. I. Efimov, L. P. Belorukova, I. V. Vasil’kova, et al., Properties of Inorganic Compounds [in Russian], Khimiya, Moscow (1983).

    Google Scholar 

  18. M. D. Nersesyan, J. T. Ritchie, I. A. Filimonov, et al., “Electric fields produced by high-temperature metal oxidation,” J. Electrochem. Soc., No. 149, J11–J17 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 4, pp. 67–72, July–August, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busurin, S.M., Morozov, Y.G., Kuznetsov, M.V. et al. Effect of an Electrostatic Field on Self-Propagating High-Temperature Synthesis of Manganese Ferrite. Combust Explos Shock Waves 41, 421–425 (2005). https://doi.org/10.1007/s10573-005-0051-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-005-0051-x

Key words

Navigation