Skip to main content

Advertisement

Log in

Future Perspectives of Oxytosis/Ferroptosis Research in Neurodegeneration Diseases

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The current report briefly summarizes the existing hypotheses and relevant evidence of oxytosis/ferroptosis-mediated cell death and outlines future perspectives of neurodegeneration research. Furthermore, it highlights the potential application of specific markers (e.g., activators, inhibitors, redox modulators, antioxidants, iron chelators) in the study of regulatory mechanisms of oxytosis/ferroptosis. It appears that these markers may be a suitable option for experimental investigations targeting key pathways of oxytosis/ferroptosis, such as the inhibition of the cystine/glutamate antiporter/glutathione/glutathione peroxidase 4 axis, glutamate oxidative toxicity, glutathione depletion, iron dyshomeostasis, iron-mediated lipid peroxidation, and others. From a clinical perspective, an innovative research approach to investigate the oxytosis/ferroptosis pathways in cells of the central nervous system and their relationship to neurodegenerative diseases is desirable. It is necessary to expand the existing knowledge about the molecular mechanisms of neurodegenerative diseases and to provide innovative diagnostic procedures to prevent their progression, as well as to develop effective neuroprotective treatment. The importance of preclinical studies focused predominantly on oxytosis/ferroptosis inhibitors (iron chelators or lipoxygenase inhibitors and lipophilic antioxidants) that could chelate iron or inhibit lipid peroxidation is also discussed. Specifically, this targeted inhibition of neuronal death could represent a potential therapeutic strategy for some neurodegenerative diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing does not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

CNS:

Central nervous system

Fer-1:

Ferrostatin-1

FINs:

Ferroptosis-inducing compound

FSP1:

Ferroptosis suppressor protein

GSH:

Glutathione

GPX4:

Glutathione peroxidase 4

Lip-1:

Liproxstatin

LPO:

Lipid peroxidation

LOX:

Lipoxygenase

PEBP1:

Phosphatidylethanolamine-binding protein 1

PUFAs:

Polyunsaturated fatty acids

ROS:

Reactive oxygen species

Xc¯:

Cystine/glutamate antiporter

References

  • Abrams RP, Carrol WL, Woerpel KA (2016) Five-membered ring peroxide selectively initiates ferroptosis in cancers. ACS Chem Biol 11:1305–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelova PR, Choi ML, Berezhnov AV, Horrocks MH, Hughes CD, De S et al (2020) Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ 27:2781–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf A, Jeandriens J, Parkes HG, So PW (2020) Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: evidence of ferroptosis. Redox Biol 32:101494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayton S, Portbury S, Kalinowski P, Agarwal P, Diouf I, Schneider JA et al (2021) Regional brain iron associated with deterioration in Alzheimer’s disease: a large cohort study and theoretical significance. Alzheimer’s Dement 17:1244–1256

    Article  Google Scholar 

  • Bersuker K, Hendricks JM, Li Z, Magtanang L, Ford B, Tang PH et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Hambright WS, Na R, Ran Q (2015) Ablation of the ferroptosis inhibitors glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem 290:28097–28106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Kang R, Kroemer G, Tang D (2021) Organelle-specific regulation of ferroptosis. Cell Death Differ 28:2843–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czapski GA, Czubowicz K, Strosznajder RP (2012) Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacol Rep 64:1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M et al (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3:1–25

    Article  Google Scholar 

  • Doll S, Freitas FP, Shah R, Aldrovandi M, Costa de Silva M, Ingold I et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Xiao Y, Zhao C, Zhang Z, Liu W, Ma J et al (2022) New deferric amine compounds efficiently chelate excess iron to treat iron overload disorders and to prevent ferroptosis. Adv Sci 9:e2202679

    Article  Google Scholar 

  • Friedman Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191

    Article  Google Scholar 

  • Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA et al (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, McClatchy DB, Maher P, Liang Z, Diedrich JK, Soriano-Castell D et al (2020) Intracellular amyloid toxicity induces oxytosis/ferroptosis regulated cell death. Cell Death Dis 11:828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karuppagounder SS, Alin L, Chen Y, Brand D, Bourassa MW, Dietrich K et al (2018) N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol 84:854–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landshamer S, Hoehn M, Barth N, Duvezin-Caubet S, Schwake G, Tobaben S et al (2008) Bid-induced release of AIF from mitochondria causes immediate neuronal cell death. Cell Death Differ 15:1553–1563

    Article  CAS  PubMed  Google Scholar 

  • Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW et al (2013) The cystine/glutamate antiporter system xc in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewerenz J, Ates G, Methner A, Conrad M, Maher P (2018) Oxytosis/ferroptosis-(re-) emerging roles for oxidative stress-dependent non-apoptotic cell death in diseases of the central nervous system. Front Neurosci 12:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Maher P, Currais A, Schubert D (2020) Using the oxytosis/ferroptosis pathway to understand and treat age-associated neurodegenerative diseases. Cell Chem Biol 27:1456–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel ULM (2004) Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation: essential role of TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappaB pathway. J Biol Chem 279:32869–32881

    Article  CAS  PubMed  Google Scholar 

  • Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827:65–75

    Article  CAS  PubMed  Google Scholar 

  • Martin WRW, Wieler M, Gee M (2008) Midbrain iron content in early Parkinson disease. A potential biomarker of disease status. Neurology 70:1411–1417

    Article  CAS  PubMed  Google Scholar 

  • Neitemeier S, Jelinek A, Laino V, Hoffman L, Eisenbach I, Eying R et al (2017) BID links ferroptosis to mitochondrial cell death pathways. Redox Biol 12:558–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obrocki P, Khatun A, Ness D, Senkevich K, Hanrieder J, Capraro F et al (2020) Perspectives in fluid biomarkers in neurodegeneration from the 2019 biomarkers in neurodegenerative diseases course - a joint PhD student course at University College London and University of Gothenburg. Alzheimer Res Ther 12:20

    Article  Google Scholar 

  • Pedrera L, Espiritu RA, Ros U, Weber J, Schmitt A, Stroh J et al (2021) Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ 28:1644–1657

    Article  CAS  PubMed  Google Scholar 

  • Qin D, Wang J, Le A, Wang TJ, Chen X, Wang J (2021) Traumatic brain injury: ultrastructural features in neuronal ferroptosis, glial cell activation, and polarization, and blood-brain barrier breakdown. Cells 10:1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratan RR (2020) The chemical biology of ferroptosis in the central nervous system. Cell Chem Biol 27:479–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockfield S, Chhabra R, Robertson M, Rehman N, Bisht R, Nanjundan M (2018) Links between iron and lipids: Implications in some major human diseases. Pharmaceuticals 11:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ et al (2016) Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nature Chem Biol 12:497–503

    Article  CAS  Google Scholar 

  • Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136:4551–4556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soriano-Castell D, Currais A, Maher P (2021) Defining a pharmacological inhibitor fingerprint for oxytosis/ferroptosis. Free Radic Biol Med 171:219–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Zheng Y, Wang C, Liu Y (2018) Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis 9:753

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Berleth N, Wu W, Schlutermann D, Deitersen J, Stuhldreier F et al (2021) FIN56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis 12:1028

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan S, Schubert D, Maher P et al (2001) Oxytosis: a novel form of programmed cell death. Curr Top Med Chem 1:497–506

    Article  CAS  PubMed  Google Scholar 

  • Ulatowski LM, Manor D (2015) Vitamin E and neurodegeneration. Neurobiol Dis 84:78–83

    Article  CAS  PubMed  Google Scholar 

  • Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel SE, Tyutina YY, Zhao J, Croix CMS, Dar HH, Mao G et al (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171:628–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Song X, Sun X, Huang J, Zhong M, Lotze MT et al (2016) Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem Biophys Res Commun 473:775–780

    Article  CAS  PubMed  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME, Skouta R, Viswanathan VS, Cheah JH et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Zeng L, Yuan X, Wang S, Ge A, Xu H, Zeng J (2022) The mechanism of ferroptosis regulating oxidative stress in ischemic stroke and the regulation mechanism of natural pharmacological active compounds. Biomed Pharmacother 154:113611

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, An H, Yu F, Wang K, Zheng L, Zhou W et al (2021) Benefits of iron chelators in the treatment of Parkinson’s disease. Neurochem Res 46:1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Swanda RV, Nie C, Koppula P, Cheng W, Zhang J et al (2021a) mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun 12:1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Lu X, Tai B, Li W, Li T (2021b) Ferroptosis and its multifaceted roles in cerebral stroke. Front Cell Neurosci 15:615372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Dar HH, Deng Y, St. Croix CM, Li Z, Minami Y et al (2020) PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells. Proc Natl Acad Sci USA 117:14376–14385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M et al (2017) On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci 3:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA, Ratan RR (2017) Neuronal death after hemorrhagic stroke in vitro and in vivo shares feature of ferroptosis and necrosis. Stroke 48:1033–1043

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W et al (2020) Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Alena Viktorinova.

Ethics declarations

Competing interests

The author has no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viktorinova, A. Future Perspectives of Oxytosis/Ferroptosis Research in Neurodegeneration Diseases. Cell Mol Neurobiol 43, 2761–2768 (2023). https://doi.org/10.1007/s10571-023-01353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-023-01353-5

Keywords

Navigation