Abstract
Intracranial aneurysms are reported to affect 2–5% of the population. Despite advances in the surgical management of this disease, diagnostic technologies have marginally improved and still rely on expensive or invasive imaging procedures. Currently, there is no blood-based test to detect cerebral aneurysm formation or quantify the risk of rupture. The aim of this review is to summarize current literature on the mechanism of aneurysm formation, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future blood-based test. Efforts should be focused on clinical-translational approaches to create an assay to screen for cerebral aneurysm presence and risk-stratify patients to allow for superior treatment timing and management.
Graphical Abstract
Cerebral Aneurysm Blood Test Considerations: There are multiple caveats to development of a putative blood test to detect cerebral aneurysm presence.
Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Aoki T, Kataoka H, Moriwaki T, Nozaki K, Hashimoto N (2007a) Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke 38(8):2337–2345. https://doi.org/10.1161/STROKEAHA.107.481838
Aoki T, Kataoka H, Shimamura M, Nakagami H, Wakayama K, Moriwaki T, Ishibashi R, Nozaki K, Morishita R, Hashimoto N (2007b) NF-kappaB is a key mediator of cerebral aneurysm formation. Circulation 116(24):2830–2840. https://doi.org/10.1161/CIRCULATIONAHA.107.728303
Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K, Hashimoto N (2009a) Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke 40(3):942–951. https://doi.org/10.1161/STROKEAHA.108.532556
Aoki T, Kataoka H, Ishibashi R, Nozaki K, Morishita R, Hashimoto N (2009b) Reduced collagen biosynthesis is the hallmark of cerebral aneurysm: contribution of interleukin-1beta and nuclear factor-kappaB. Arterioscler Thromb Vasc Biol 29(7):1080–1086. https://doi.org/10.1161/ATVBAHA.108.180760
Aoki T, Kataoka H, Nishimura M, Ishibashi R, Morishita R, Miyamoto S (2010) Ets-1 promotes the progression of cerebral aneurysm by inducing the expression of MCP-1 in vascular smooth muscle cells. Gene Ther 17(9):1117–1123. https://doi.org/10.1038/gt.2010.60
Aoki T, Yamamoto K, Fukuda M, Shimogonya Y, Fukuda S, Narumiya S (2016) Sustained expression of MCP-1 by low wall shear stress loading concomitant with turbulent flow on endothelial cells of intracranial aneurysm. Acta Neuropathol Commun 4(1):48. https://doi.org/10.1186/s40478-016-0318-3
Aoki T, Frosen J, Fukuda M, Bando K, Shioi G, Tsuji K, Ollikainen E, Nozaki K, Laakkonen J, Narumiya S (2017) Prostaglandin E2-EP2-NF-kappaB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci Signal. https://doi.org/10.1126/scisignal.aah6037
Baker CJ, Fiore A, Connolly ES, Jr., Baker KZ, Solomon RA (1995) Serum elastase and alpha-1-antitrypsin levels in patients with ruptured and unruptured cerebral aneurysms. Neurosurgery 37(1):56–61; discussion 61–52. https://doi.org/10.1227/00006123-199507000-00008
Barak T, Ristori E, Ercan-Sencicek AG, Miyagishima DF, Nelson-Williams C, Dong W, Jin SC, Prendergast A, Armero W, Henegariu O, Erson-Omay EZ, Harmancı AS, Guy M, Gültekin B, Kilic D, Rai DK, Goc N, Aguilera SM, Gülez B, Altinok S, Ozcan K, Yarman Y, Coskun S, Sempou E, Deniz E, Hintzen J, Cox A, Fomchenko E, Jung SW, Ozturk AK, Louvi A, Bilgüvar K, Connolly ES Jr, Khokha MK, Kahle KT, Yasuno K, Lifton RP, Mishra-Gorur K, Nicoli S, Günel M (2021) PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nat Med 27(12):2165–2175. https://doi.org/10.1038/s41591-021-01572-7
Bellapart J, Nasrallah F, Winearls J, Lassig-Smith M, Stuart J, Boots R, Winter C, Flaws D, Bulmer A, Jones L, Laupland KB (2022) Diagnostic sensitivity of plasma endothelin-1 for cerebral vasospasm after subarachnoid hemorrhage, a multicentre double-blind study. J Intensive Care Med 37(6):769–775. https://doi.org/10.1177/08850666211056568
Bellosta S, Via D, Canavesi M, Pfister P, Fumagalli R, Paoletti R, Bernini F (1998) HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 18(11):1671–1678. https://doi.org/10.1161/01.atv.18.11.1671
Bijlenga P, Gondar R, Schilling S, Morel S, Hirsch S, Cuony J, Corniola MV, Perren F, Rufenacht D, Schaller K (2017) PHASES score for the management of intracranial aneurysm: a cross-sectional population-based retrospective study. Stroke 48(8):2105–2112. https://doi.org/10.1161/STROKEAHA.117.017391
Brown RD Jr, Broderick JP (2014) Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 13(4):393–404
Brown RJ, Epling BP, Staff I, Fortunato G, Grady JJ, McCullough LD (2015) Polyuria and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. BMC Neurol 15:201. https://doi.org/10.1186/s12883-015-0446-6
Caliskan E, Pekcevik Y, Kaya A (2016) Can we evaluate cranial aneurysms on conventional brain magnetic resonance imaging? J Neurosci Rural Pract 7(1):83–86. https://doi.org/10.4103/0976-3147.165425
Chalouhi N, Theofanis T, Starke RM, Zanaty M, Jabbour P, Dooley SA, Hasan D (2015) Potential role of granulocyte-monocyte colony-stimulating factor in the progression of intracranial aneurysms. DNA Cell Biol 34(1):78–81. https://doi.org/10.1089/dna.2014.2618
Chen J, Zheng ZV, Lu G, Chan WY, Zhang Y, Wong GKC (2022) Microglia activation, classification and microglia-mediated neuroinflammatory modulators in subarachnoid hemorrhage. Neural Regen Res 17(7)
Christensen ST, Johansson SE, Warfvinge K, Braun T, Boettger T, Edvinsson L, Haanes KA (2019) Exploration of physiological and pathophysiological implications of miRNA-143 and miRNA-145 in cerebral arteries. J Cardiovasc Pharmacol 74(5):409–419. https://doi.org/10.1097/FJC.0000000000000735
Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, Avşar T, Li J, Murray PB, Henegariu O, Yilmaz S, Günel JM, Carrión-Grant G, Yilmaz B, Grady C, Tanrikulu B, Bakircioğlu M, Kaymakçalan H, Caglayan AO, Sencar L, Ceyhun E, Atik AF, Bayri Y, Bai H, Kolb LE, Hebert RM, Omay SB, Mishra-Gorur K, Choi M, Overton JD, Holland EC, Mane S, State MW, Bilgüvar K, Baehring JM, Gutin PH, Piepmeier JM, Vortmeyer A, Brennan CW, Pamir MN, Kiliç T, Lifton RP, Noonan JP, Yasuno K, Günel M (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339(6123):1077–1080. https://doi.org/10.1126/science.1233009
Coplin WM, Longstreth WT Jr, Lam AM, Chandler WL, Mayberg TS, Fine JS, Winn HR (1999) Cerebrospinal fluid creatine kinase-BB isoenzyme activity and outcome after subarachnoid hemorrhage. Arch Neurol 56(11):1348–1352. https://doi.org/10.1001/archneur.56.11.1348
Danese E, Montagnana M (2016) An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann Transl Med 4(10):194. https://doi.org/10.21037/atm.2016.05.19
de Korte AM, Aquarius R, Vogl T, Roth J, Bartels R, Boogaarts HD, van Lent P, De Vries J (2020) Elevation of inflammatory S100A8/S100A9 complexes in intracranial aneurysms. J Neurointerv Surg 12(11):1117–1121. https://doi.org/10.1136/neurintsurg-2019-015753
Deboevere N, Marjanovic N, Sierecki M, Marchetti M, Dubocage M, Magimel E, Mimoz O, Guenezan J (2019) Value of copeptin and the S-100b protein assay in ruling out the diagnosis of stroke-induced dizziness pattern in emergency departments. Scand J Trauma Resusc Emerg Med 27(1):72. https://doi.org/10.1186/s13049-019-0651-1
Egea-Guerrero JJ, Revuelto-Rey J, Murillo-Cabezas F, Munoz-Sanchez MA, Vilches-Arenas A, Sanchez-Linares P, Dominguez-Roldan JM, Leon-Carrion J (2012) Accuracy of the S100beta protein as a marker of brain damage in traumatic brain injury. Brain Inj 26(1):76–82. https://doi.org/10.3109/02699052.2011.635360
Elsheikh S, Urbach H, Meckel S (2020) Contrast enhancement of intracranial aneurysms on 3T 3D black-blood MRI and its relationship to aneurysm recurrence following endovascular treatment. AJNR Am J Neuroradiol 41(3):495–500. https://doi.org/10.3174/ajnr.A6440
Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schutt S, Fritzinger M, Horn P, Vajkoczy P, Wendel-Wellner M, Ragoschke A, Kuehl S, Brunner J, Schurer L, Schmiedeck P, Hennerici M (2000) Endothelin-1 in subarachnoid hemorrhage: an acute-phase reactant produced by cerebrospinal fluid leukocytes. Stroke 31(12):2971–2975. https://doi.org/10.1161/01.str.31.12.2971
Finci L, Divernois J, Meier B, Divernois S, Ratib O, Righetti A, Rutishauser W (1985) Multivessel percutaneous coronary angioplasty. Schweiz Med Wochenschr 115(45):1587–1590
Fukuda S, Hashimoto N, Naritomi H, Nagata I, Nozaki K, Kondo S, Kurino M, Kikuchi H (2000) Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 101(21):2532–2538. https://doi.org/10.1161/01.cir.101.21.2532
Gao X, Xiong Y, Li Q, Han M, Shan D, Yang G, Zhang S, Xin D, Zhao R, Wang Z, Xue H, Li G (2020) Extracellular vesicle-mediated transfer of miR-21-5p from mesenchymal stromal cells to neurons alleviates early brain injury to improve cognitive function via the PTEN/Akt pathway after subarachnoid hemorrhage. Cell Death Dis 11(5):363. https://doi.org/10.1038/s41419-020-2530-0
Garg P, Morris P, Fazlanie AL, Vijayan S, Dancso B, Dastidar AG, Plein S, Mueller C, Haaf P (2017) Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin. Intern Emerg Med 12(2):147–155. https://doi.org/10.1007/s11739-017-1612-1
Gounis MJ, Vedantham S, Weaver JP, Puri AS, Brooks CS, Wakhloo AK, Bogdanov AA Jr (2014) Myeloperoxidase in human intracranial aneurysms: preliminary evidence. Stroke 45(5):1474–1477. https://doi.org/10.1161/STROKEAHA.114.004956
Gyldenholm T, Hvas CL, Hvas AM, Hviid CVB (2022) Serum glial fibrillary acidic protein (GFAP) predicts outcome after intracerebral and subarachnoid hemorrhage. Neurol Sci 43(10):6011–6019. https://doi.org/10.1007/s10072-022-06274-7
Hallikainen J, Pyysalo M, Keranen S, Kellokoski J, Koivisto T, Suominen AL, Pussinen P, Pessi T, Frosen J (2021) Systemic immune response against the oral pathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans is associated with the formation and rupture of intracranial aneurysms. Eur J Neurol 28(9):3089–3099. https://doi.org/10.1111/ene.14986
Hanafy KA (2013) The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation 10(1):868. https://doi.org/10.1186/1742-2094-10-83
Hoh BL, Chi YY, Dermott MA, Lipori PJ, Lewis SB (2009) The effect of coiling versus clipping of ruptured and unruptured cerebral aneurysms on length of stay, hospital cost, hospital reimbursement, and surgeon reimbursement at the university of Florida. Neurosurgery 64(4):614–619; discussion 619–621. https://doi.org/10.1227/01.Neu.0000340784.75352.A4
Hoh BL, Hosaka K, Downes DP, Nowicki KW, Fernandez CE, Batich CD, Scott EW (2011) Monocyte chemotactic protein-1 promotes inflammatory vascular repair of murine carotid aneurysms via a macrophage inflammatory protein-1alpha and macrophage inflammatory protein-2-dependent pathway. Circulation 124(20):2243–2252. https://doi.org/10.1161/CIRCULATIONAHA.111.036061
Hoh BL, Hosaka K, Downes DP, Nowicki KW, Wilmer EN, Velat GJ, Scott EW (2014) Stromal cell-derived factor-1 promoted angiogenesis and inflammatory cell infiltration in aneurysm walls. J Neurosurg 120(1):73–86. https://doi.org/10.3171/2013.9.JNS122074
Hoh BL, Rojas K, Lin L, Fazal HZ, Hourani S, Nowicki KW, Schneider MB, Hosaka K (2018) Estrogen deficiency promotes cerebral aneurysm rupture by upregulation of Th17 cells and interleukin-17A which downregulates E-cadherin. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.008863
Hong CM, Tosun C, Kurland DB, Gerzanich V, Schreibman D, Simard JM (2014) Biomarkers as outcome predictors in subarachnoid hemorrhage–a systematic review. Biomarkers 19(2):95–108. https://doi.org/10.3109/1354750X.2014.881418
Huang J, Zhang H, You L, Zhang J, Jiang Z (2022) Coenzyme Q10 inhibits intracranial aneurysm formation and progression in a mouse model. Pediatr Res 91(4):839–845. https://doi.org/10.1038/s41390-021-01512-8
Hussain S, Barbarite E, Chaudhry NS, Gupta K, Dellarole A, Peterson EC, Elhammady MS (2015) Search for biomarkers of intracranial aneurysms: a systematic review. World Neurosurg 84(5):1473–1483. https://doi.org/10.1016/j.wneu.2015.06.034
International Study of Unruptured Intracranial Aneurysms I (1998) Unruptured intracranial aneurysms–risk of rupture and risks of surgical intervention. N Engl J Med 339(24):1725–1733. https://doi.org/10.1056/NEJM199812103392401
Ishibashi R, Aoki T, Nishimura M, Hashimoto N, Miyamoto S (2010) Contribution of mast cells to cerebral aneurysm formation. Curr Neurovasc Res 7(2):113–124. https://doi.org/10.2174/156720210791184916
Ishii D, Zanaty M, Roa JA, Li L, Lu Y, Sabotin R, Allan L, Samaniego EA, Hasan DM (2021) Concentration of Lp(a) (Lipoprotein[a]) in aneurysm sac is associated with wall enhancement of unruptured intracranial aneurysm. Stroke 52(4):1465–1468. https://doi.org/10.1161/STROKEAHA.120.032304
Jayaraman T, Paget A, Shin YS, Li X, Mayer J, Chaudhry H, Niimi Y, Silane M, Berenstein A (2008) TNF-alpha-mediated inflammation in cerebral aneurysms: a potential link to growth and rupture. Vasc Health Risk Manag 4(4):805–817. https://doi.org/10.2147/vhrm.s2700
Jeong YG, Jung YT, Kim MS, Eun CK, Jang SH (2009) Size and location of ruptured intracranial aneurysms. J Korean Neurosurg Soc 45(1):11–15. https://doi.org/10.3340/jkns.2009.45.1.11
Jia W, Wang R, Zhao J, Liu IY, Zhang D, Wang X, Han X (2011) E-selectin expression increased in human ruptured cerebral aneurysm tissues. Can J Neurol Sci 38(6):858–862. https://doi.org/10.1017/s0317167100012439
Jiang H, Ding Y, Wu L, Jiang C, Wang C (2022) The roles and diagnostic value of miRNA-1246 in the serum of patients with intracranial aneurysms. Transl Neurosci 13(1):172–180. https://doi.org/10.1515/tnsci-2022-0227
Jin H, Jiang Y, Liu X, Meng X, Li Y (2020) Cell-free microRNA-21: biomarker for intracranial aneurysm rupture. Chin Neurosurg J 6:15. https://doi.org/10.1186/s41016-020-00195-0
Julicher P, Greenslade JH, Parsonage WA, Cullen L (2017) The organisational value of diagnostic strategies using high-sensitivity troponin for patients with possible acute coronary syndromes: a trial-based cost-effectiveness analysis. BMJ Open 7(6):e013653. https://doi.org/10.1136/bmjopen-2016-013653
Juvela S (2002) Plasma endothelin and big endothelin concentrations and serum endothelin-converting enzyme activity following aneurysmal subarachnoid hemorrhage. J Neurosurg 97(6):1287–1293. https://doi.org/10.3171/jns.2002.97.6.1287
Kaminska J, Lyson T, Chrzanowski R, Sawicki K, Milewska AJ, Tylicka M, Zinczuk J, Matowicka-Karna J, Dymicka-Piekarska V, Mariak Z, Koper-Lenkiewicz OM (2020) Ratio of IL-8 in csf versus serum is elevated in patients with unruptured brain aneurysm. J Clin Med. https://doi.org/10.3390/jcm9061761
Kaminska J, Dymicka-Piekarska V, Chrzanowski R, Sawicki K, Milewska AJ, Zinczuk J, Tylicka M, Jadeszko M, Mariak Z, Kratz EM, Matowicka-Karna J, Kornhuber J, Lewczuk P, Koper-Lenkiewicz OM (2021) IL-6 Quotient (The Ratio of Cerebrospinal Fluid IL-6 to Serum IL-6) as a biomarker of an unruptured intracranial aneurysm. J Inflamm Res 14:6103–6114. https://doi.org/10.2147/JIR.S335618
Katsanos AH, Makris K, Stefani D, Koniari K, Gialouri E, Lelekis M, Chondrogianni M, Zompola C, Dardiotis E, Rizos I, Parissis J, Boutati E, Voumvourakis K, Tsivgoulis G (2017) Plasma glial fibrillary acidic protein in the differential diagnosis of intracerebral hemorrhage. Stroke 48(9):2586–2588. https://doi.org/10.1161/STROKEAHA.117.018409
Kaynar MY, Tanriverdi T, Kemerdere R, Atukeren P, Gumustas K (2005) Cerebrospinal fluid superoxide dismutase and serum malondialdehyde levels in patients with aneurysmal subarachnoid hemorrhage: preliminary results. Neurol Res 27(5):562–567. https://doi.org/10.1179/016164105X17288
Kedziora J, Burzynska M, Gozdzik W, Kubler A, Kobylinska K, Adamik B (2021) Biomarkers of neurological outcome after aneurysmal subarachnoid hemorrhage as early predictors at discharge from an intensive care unit. Neurocrit Care 34(3):856–866. https://doi.org/10.1007/s12028-020-01110-2
Keedy A (2006) An overview of intracranial aneurysms. Mcgill J Med 9(2):141–146
Korai M, Purcell J, Kamio Y, Mitsui K, Furukawa H, Yokosuka K, Miyamoto T, Sato H, Sato H, Eguchi S, Ai J, Lawton MT, Hashimoto T (2021) Neutrophil extracellular traps promote the development of intracranial aneurysm rupture. Hypertension 77(6):2084–2093. https://doi.org/10.1161/HYPERTENSIONAHA.120.16252
Lai PM, Du R (2016) Association between S100B levels and long-term outcome after aneurysmal subarachnoid hemorrhage: systematic review and pooled analysis. PLoS ONE 11(3):e0151853. https://doi.org/10.1371/journal.pone.0151853
Larsson SC, Gill D (2021) Association of serum magnesium levels with risk of intracranial aneurysm: a Mendelian randomization study. Neurology 97(4):e341–e344. https://doi.org/10.1212/wnl.0000000000012244
Li H, Xu H, Li Y, Jiang Y, Hu Y, Liu T, Tian X, Zhao X, Zhu Y, Wang S, Zhang C, Ge J, Wang X, Wen H, Bai C, Sun Y, Song L, Zhang Y, Hui R, Cai J, Chen J (2020) Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms. Nat Commun 11(1):3218. https://doi.org/10.1038/s41467-020-16990-3
Li Y, Wen J, Liang D, Sun H (2022) Extracellular vesicles and their associated miRNAs as potential biomarkers in intracranial aneurysm. Front Mol Biosci 9:785314. https://doi.org/10.3389/fmolb.2022.785314
Lu L, Zhang LJ, Poon CS, Wu SY, Zhou CS, Luo S, Wang M, Lu GM (2012) Digital subtraction CT angiography for detection of intracranial aneurysms: comparison with three-dimensional digital subtraction angiography. Radiology 262(2):605–612. https://doi.org/10.1148/radiol.11110486
Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I, Bach D, Frey A, Marr A, Roux S, Kassell N (2013) Randomised trial of clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid hemorrhage undergoing surgical clipping (CONSCIOUS-2). Acta Neurochir Suppl 115:27–31. https://doi.org/10.1007/978-3-7091-1192-5_7
Malhotra A, Wu X, Forman HP, Matouk CC, Gandhi D, Sanelli P (2018) Management of tiny unruptured intracranial aneurysms: a comparative effectiveness analysis. JAMA Neurol 75(1):27–34. https://doi.org/10.1001/jamaneurol.2017.3232
Mariajoseph FP, Huang H, Lai LT (2022) Influence of socioeconomic status on the incidence of aneurysmal subarachnoid haemorrhage and clinical recovery. J Clin Neurosci 95:70–74. https://doi.org/10.1016/j.jocn.2021.11.033
Martinez AN, Tortelote GG, Pascale CL, McCormack IG, Nordham KD, Suder NJ, Couldwell MW, Dumont AS (2022) Single-cell transcriptome analysis of the circle of Willis in a mouse cerebral aneurysm model. Stroke 53(8):2647–2657. https://doi.org/10.1161/STROKEAHA.122.038776
Masaoka H, Suzuki R, Hirata Y, Emori T, Marumo F, Hirakawa K (1989) Raised plasma endothelin in aneurysmal subarachnoid haemorrhage. Lancet 2(8676):1402. https://doi.org/10.1016/s0140-6736(89)92019-9
Molenberg R, Aalbers MW, Mazuri A, Luijckx GJ, Metzemaekers JDM, Groen RJM, Uyttenboogaart M, van Dijk JMC (2021) The Unruptured Intracranial Aneurysm Treatment Score as a predictor of aneurysm growth or rupture. Eur J Neurol 28(3):837–843. https://doi.org/10.1111/ene.14636
Morga R, Czepko R, Dembinska-Kiec A, Danilewicz B (2007) Assessment of the haemostatic system in patients surgically treated for ruptured cerebral aneurysm. Neurol Neurochir Pol 41(4):296–305
Moriwaki T, Takagi Y, Sadamasa N, Aoki T, Nozaki K, Hashimoto N (2006) Impaired progression of cerebral aneurysms in interleukin-1beta-deficient mice. Stroke 37(3):900–905. https://doi.org/10.1161/01.STR.0000204028.39783.d9
Mota Telles JP, Rabelo NN, Junior JR, Teixeira MJ, Figueiredo EG (2021) C-Reactive protein levels are higher in patients with fusiform intracranial aneurysms: a case-control study. World Neurosurg 146:e896–e901. https://doi.org/10.1016/j.wneu.2020.11.042
Nakaoka H, Tajima A, Yoneyama T, Hosomichi K, Kasuya H, Mizutani T, Inoue I (2014) Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm. Stroke 45(8):2239–2245. https://doi.org/10.1161/STROKEAHA.114.005851
Ng GJL, Quek AML, Cheung C, Arumugam TV, Seet RCS (2017) Stroke biomarkers in clinical practice: a critical appraisal. Neurochem Int 107:11–22. https://doi.org/10.1016/j.neuint.2017.01.005
Nowicki KW, Hosaka K, He Y, McFetridge PS, Scott EW, Hoh BL (2014) Novel high-throughput in vitro model for identifying hemodynamic-induced inflammatory mediators of cerebral aneurysm formation. Hypertension 64(6):1306–1313. https://doi.org/10.1161/HYPERTENSIONAHA.114.03775
Nowicki KW, Hosaka K, Walch FJ, Scott EW, Hoh BL (2018) M1 macrophages are required for murine cerebral aneurysm formation. J Neurointerv Surg 10(1):93–97. https://doi.org/10.1136/neurintsurg-2016-012911
Nowicki KW, D’Angelo MP, Fellows-Mayle W, McDowell MM, Friedlander RM (2019) Blockade of the platelet-driven CXCL7-CXCR1/2 pathway prevents cerebral aneurysm formation. Neurosurgery 66:310–108. https://doi.org/10.1093/neuros/nyz310_108
Nuki Y, Tsou TL, Kurihara C, Kanematsu M, Kanematsu Y, Hashimoto T (2009) Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension 54(6):1337–1344. https://doi.org/10.1161/HYPERTENSIONAHA.109.138297
Oertel M, Schumacher U, McArthur DL, Kastner S, Boker DK (2006) S-100B and NSE: markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J Clin Neurosci 13(8):834–840. https://doi.org/10.1016/j.jocn.2005.11.030
Ollikainen E, Tulamo R, Frosen J, Lehti S, Honkanen P, Hernesniemi J, Niemela M, Kovanen PT (2014) Mast cells, neovascularization, and microhemorrhages are associated with saccular intracranial artery aneurysm wall remodeling. J Neuropathol Exp Neurol 73(9):855–864. https://doi.org/10.1097/NEN.0000000000000105
Park A, Chute C, Rajpurkar P, Lou J, Ball RL, Shpanskaya K, Jabarkheel R, Kim LH, McKenna E, Tseng J, Ni J, Wishah F, Wittber F, Hong DS, Wilson TJ, Halabi S, Basu S, Patel BN, Lungren MP, Ng AY, Yeom KW (2019) Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw Open 2(6):e195600. https://doi.org/10.1001/jamanetworkopen.2019.5600
Pera J, Korostynski M, Golda S, Piechota M, Dzbek J, Krzyszkowski T, Dziedzic T, Moskala M, Przewlocki R, Szczudlik A, Slowik A (2013) Gene expression profiling of blood in ruptured intracranial aneurysms: in search of biomarkers. J Cereb Blood Flow Metab 33(7):1025–1031. https://doi.org/10.1038/jcbfm.2013.37
Petzold A, Keir G, Kay A, Kerr M, Thompson EJ (2006) Axonal damage and outcome in subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 77(6):753–759. https://doi.org/10.1136/jnnp.2005.085175
Phillips J, Roberts G, Bolger C, el Baghdady A, Bouchier-Hayes D, Farrell M, Collins P (1997) Lipoprotein (a): a potential biological marker for unruptured intracranial aneurysms. Neurosurgery 40 (5):1112–1115; discussion 1115–1117. https://doi.org/10.1097/00006123-199705000-00067
Polin RS, Bavbek M, Shaffrey ME, Billups K, Bogaev CA, Kassell NF, Lee KS (1998) Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage. J Neurosurg 89(4):559–567. https://doi.org/10.3171/jns.1998.89.4.0559
Poppenberg KE, Zebraski HR, Avasthi N, Waqas M, Siddiqui AH, Jarvis JN, Tutino VM (2021) Epigenetic landscapes of intracranial aneurysm risk haplotypes implicate enhancer function of endothelial cells and fibroblasts in dysregulated gene expression. BMC Med Genomics 14(1):162. https://doi.org/10.1186/s12920-021-01007-9
Powers WJ, Zazulia AR (2003) The use of positron emission tomography in cerebrovascular disease. Neuroimaging Clin N Am 13(4):741–758. https://doi.org/10.1016/s1052-5149(03)00091-1
Raaymakers TW, Rinkel GJ, Limburg M, Algra A (1998) Mortality and morbidity of surgery for unruptured intracranial aneurysms: a meta-analysis. Stroke 29(8):1531–1538. https://doi.org/10.1161/01.str.29.8.1531
Roberts R, Henry PD, Witteeveen SA, Sobel BE (1974) Quantification of serum creatine phosphokinase isoenzyme activity. Am J Cardiol 33(5):650–654. https://doi.org/10.1016/0002-9149(74)90257-4
Rosalki SB, Roberts R, Katus HA, Giannitsis E, Ladenson JH, Apple FS (2004) Cardiac biomarkers for detection of myocardial infarction: perspectives from past to present. Clin Chem 50(11):2205–2213. https://doi.org/10.1373/clinchem.2004.041749
Rothoerl RD, Schebesch KM, Kubitza M, Woertgen C, Brawanski A, Pina AL (2006) ICAM-1 and VCAM-1 expression following aneurysmal subarachnoid hemorrhage and their possible role in the pathophysiology of subsequent ischemic deficits. Cerebrovasc Dis 22(2–3):143–149. https://doi.org/10.1159/000093243
Sandalcioglu IE, Wende D, Eggert A, Regel JP, Stolke D, Wiedemayer H (2006) VEGF plasma levels in non-ruptured intracranial aneurysms. Neurosurg Rev 29(1):26–29. https://doi.org/10.1007/s10143-005-0411-8
Schievink WI, Prakash UB, Piepgras DG, Mokri B (1994) Alpha 1-antitrypsin deficiency in intracranial aneurysms and cervical artery dissection. Lancet 343(8895):452–453. https://doi.org/10.1016/s0140-6736(94)92693-x
Schievink WI, Katzmann JA, Piepgras DG, Schaid DJ (1996) Alpha-1-antitrypsin phenotypes among patients with intracranial aneurysms. J Neurosurg 84(5):781–784. https://doi.org/10.3171/jns.1996.84.5.0781
Schulter G, Leber K, Kronawetter E, Rubenbauer VR, Konstantiniuk P, Papousek I (2014) Body pigmentation as a risk factor for the formation of intracranial aneurysms. Biomed Res Int 2014:301631. https://doi.org/10.1155/2014/301631
Shikata F, Shimada K, Sato H, Ikedo T, Kuwabara A, Furukawa H, Korai M, Kotoda M, Yokosuka K, Makino H, Ziegler EA, Kudo D, Lawton MT, Hashimoto T (2019) Potential influences of gut microbiota on the formation of intracranial aneurysm. Hypertension 73(2):491–496. https://doi.org/10.1161/HYPERTENSIONAHA.118.11804
Shimada K, Furukawa H, Wada K, Korai M, Wei Y, Tada Y, Kuwabara A, Shikata F, Kitazato KT, Nagahiro S, Lawton MT, Hashimoto T (2015) Protective role of peroxisome proliferator-activated receptor-gamma in the development of intracranial aneurysm rupture. Stroke 46(6):1664–1672. https://doi.org/10.1161/STROKEAHA.114.007722
Shimizu K, Imai H, Kawashima A, Okada A, Ono I, Miyamoto S, Kataoka H, Aoki T (2021) Induction of CCN1 in growing saccular aneurysms: a potential marker predicting unstable lesions. J Neuropathol Exp Neurol 80(7):695–704. https://doi.org/10.1093/jnen/nlab037
Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS (2013) The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res 10(3):247–255. https://doi.org/10.2174/15672026113109990003
Starke RM, Chalouhi N, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Wada K, Shimada K, Hasan DM, Greig NH, Owens GK, Dumont AS (2014) Critical role of TNF-alpha in cerebral aneurysm formation and progression to rupture. J Neuroinflammation 11:77. https://doi.org/10.1186/1742-2094-11-77
Sun L, Zhao M, Zhang J, Lv M, Li Y, Yang X, Liu A, Wu Z (2017) MiR-29b downregulation induces phenotypic modulation of vascular smooth muscle cells: implication for intracranial aneurysm formation and progression to rupture. Cell Physiol Biochem 41(2):510–518. https://doi.org/10.1159/000456887
Sun B, Liu Z, Yu Z (2022) miRNA-323a-3p promoted intracranial, aneurysm-induced inflammation via AMPK/NF-kappaB signaling pathway by AdipoR1. Adv Clin Exp Med. https://doi.org/10.17219/acem/151053
Supriya M, Christopher R, Indira Devi B, Bhat DI, Shukla D (2020) Circulating MicroRNAs as potential molecular biomarkers for intracranial aneurysmal rupture. Mol Diagn Ther 24(3):351–364. https://doi.org/10.1007/s40291-020-00465-8
Terceno M, Remollo S, Silva Y, Bashir S, Werner M, Vera-Monge VA, Serena J, Castano C (2021) Effect of combined acetylsalicylic acid and statins treatment on intracranial aneurysm rupture. PLoS ONE 16(2):e0247153. https://doi.org/10.1371/journal.pone.0247153
Tieu BC, Lee C, Sun H, Lejeune W, Recinos A 3rd, Ju X, Spratt H, Guo DC, Milewicz D, Tilton RG, Brasier AR (2009) An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J Clin Invest 119(12):3637–3651. https://doi.org/10.1172/JCI38308
Timis TL, Florian IA, Susman S, Florian IS (2021) Involvement of microglia in the pathophysiology of intracranial aneurysms and vascular malformations-a short overview. Int J Mol Sci. https://doi.org/10.3390/ijms22116141
To M, Sugimoto M, Saruta J, Yamamoto Y, Sakaguchi W, Kawata A, Matsuo M, Tsukinoki K (2021) Cognitive dysfunction in a mouse model of cerebral ischemia influences salivary metabolomics. J Clin Med. https://doi.org/10.3390/jcm10081698
Tulamo R, Frosen J, Junnikkala S, Paetau A, Kangasniemi M, Pelaez J, Hernesniemi J, Niemela M, Meri S (2010) Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest 90(2):168–179. https://doi.org/10.1038/labinvest.2009.133
Tulamo R, Frosen J, Hernesniemi J, Niemela M (2018) Inflammatory changes in the aneurysm wall: a review. J Neurointerv Surg 10(Suppl 1):i58–i67. https://doi.org/10.1136/jnis.2009.002055.rep
Tutino VM, Lu Y, Ishii D, Poppenberg KE, Rajabzadeh-Oghaz H, Siddiqui AH, Hasan DM (2021) Aberrant whole blood gene expression in the lumen of human intracranial aneurysms. Diagnostics (basel). https://doi.org/10.3390/diagnostics11081442
Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, Niessen WJ, Breteler MM, van der Lugt A (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357(18):1821–1828
Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839. https://doi.org/10.1161/01.RES.0000070112.80711.3D
Vlak MH, Algra A, Brandenburg R, Rinkel GJ (2011) Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 10(7):626–636
Wajima D, Hourani S, Dodd W, Patel D, Jones C, Motwani K, Fazal HZ, Hosaka K, Hoh BL (2020) Interleukin-6 promotes murine estrogen deficiency-associated cerebral aneurysm rupture. Neurosurgery 86(4):583–592. https://doi.org/10.1093/neuros/nyz220
Wang WH, Wang YH, Zheng LL, Li XW, Hao F, Guo D (2016) MicroRNA-29a: A potential biomarker in the development of intracranial aneurysm. J Neurol Sci 364:84–89. https://doi.org/10.1016/j.jns.2016.03.010
Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, Manley GT (2018) An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 18(2):165–180. https://doi.org/10.1080/14737159.2018.1428089
Wang WX, Springer JE, Xie K, Fardo DW, Hatton KW (2021) A highly predictive MicroRNA panel for determining delayed cerebral vasospasm risk following aneurysmal subarachnoid hemorrhage. Front Mol Biosci 8:657258. https://doi.org/10.3389/fmolb.2021.657258
Williams LN, Brown RD Jr (2013) Management of unruptured intracranial aneurysms. Neurol Clin Pract 3(2):99–108. https://doi.org/10.1212/CPJ.0b013e31828d9f6b
Wu J, Gareev I, Beylerli O, Mukhamedzyanov A, Pavlov V, Khasanov D, Khasanova G (2021) Circulating miR-126 as a Potential Non-invasive Biomarker for Intracranial Aneurysmal Rupture: A Pilot Study. Curr Neurovasc Res 18(5):525–534. https://doi.org/10.2174/1567202619666211217142116
Yang F, Xing WW, Shen DW, Tong MF, Xie FM (2020) Effect of miR-126 on intracranial aneurysms and its predictive value for rupture of aneurysms. Eur Rev Med Pharmacol Sci 24(6):3245–3253. https://doi.org/10.26355/eurrev_202003_20691
Yu P, Venkat P, Chopp M, Zacharek A, Shen Y, Ning R, Liang L, Li W, Zhang L, Landschoot-Ward J, Jiang R, Chen J (2019) Role of microRNA-126 in vascular cognitive impairment in mice. J Cereb Blood Flow Metab 39(12):2497–2511. https://doi.org/10.1177/0271678X18800593
Zanier ER, Refai D, Zipfel GJ, Zoerle T, Longhi L, Esparza TJ, Spinner ML, Bateman RJ, Brody DL, Stocchetti N (2011) Neurofilament light chain levels in ventricular cerebrospinal fluid after acute aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 82(2):157–159. https://doi.org/10.1136/jnnp.2009.177667
Zhang HL, Li L, Cheng CJ, Sun XC (2018) Expression of miR-146a-5p in patients with intracranial aneurysms and its association with prognosis. Eur Rev Med Pharmacol Sci 22(3):726–730. https://doi.org/10.26355/eurrev_201802_14300
Zhang X, Ares WJ, Taussky P, Ducruet AF, Grandhi R (2019) Role of matrix metalloproteinases in the pathogenesis of intracranial aneurysms. Neurosurg Focus 47(1):E4. https://doi.org/10.3171/2019.4.FOCUS19214
Zhou S, Dion PA, Rouleau GA (2018) Genetics of intracranial aneurysms. Stroke 49(3):780–787. https://doi.org/10.1161/STROKEAHA.117.018152
Zubkov AY, Rollins KS, Parent AD, Zhang J, Bryan RM Jr (2000) Mechanism of endothelin-1-induced contraction in rabbit basilar artery. Stroke 31(2):526–533. https://doi.org/10.1161/01.str.31.2.526
Acknowledgements
None.
Funding
None.
Author information
Authors and Affiliations
Contributions
KWN and AM conceived the study, interpreted and analyzed data, and drafted the manuscript. HAS and EKR participated in drafting and editing the manuscript. EKR designed and created figures for the manuscript. MJL, BAG, and RMF participated in designing the study, interpreting data and drafting the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nowicki, K.W., Mittal, A.M., Abou-Al-Shaar, H. et al. A Future Blood Test to Detect Cerebral Aneurysms. Cell Mol Neurobiol 43, 2697–2711 (2023). https://doi.org/10.1007/s10571-023-01346-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10571-023-01346-4