Skip to main content

Advertisement

Log in

The Role of Microglial Depletion Approaches in Pathological Condition of CNS

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microglia are the primary immune cells of the central nervous system (CNS) that comprise about 5–12% of all cells in the brain. These cells are the first line of defense that protects the CNS from damage and attacking pathogens. Microglia originate from yolk sac macrophages and migrate to the brain before the blood–brain barrier formation. Microglia show key roles in healthy CNS including promoting neurogenesis, synaptic sculpting, and maintaining homeostasis but in pathological conditions of CNS, microglial activation may exacerbate diseases. Thus, microglial depletion of the CNS is a novel approach that could be a useful tool to understand the microglial functions in neurodegenerative and neuroinflammatory diseases. There are methods for microglial ablation and reduction such as genetic tools and pharmacological inhibitors. In this study, we review recent studies that used different microglial ablation models for microglial reduction and repopulation after depletion in pathological states of CNS. Recently, studies showed that microglial depletion as a potential therapeutic application has benefits (such as inflammatory factors reduction, increase synaptogenesis, astrogliosis preventation) in CNS. For these reasons, the inhibition of microglia with these models was considered a therapeutic approach for neurodegenerative disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Affram KO, Mitchell K, Symes AJ (2017) Microglial activation results in inhibition of TGF-β-regulated gene expression. J Mol Neurosci 63:308–319

    Article  CAS  PubMed  Google Scholar 

  • Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R (2017) The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front Mol Neurosci 10:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Barati S, Kashani IR, Tahmasebi F (2022) The effects of mesenchymal stem cells transplantation on A1 neurotoxic reactive astrocyte and demyelination in the cuprizone model. J Mol Histol 53:333–346

    Article  CAS  PubMed  Google Scholar 

  • Bisht K, Sharma K, Lacoste B, Tremblay M-È (2016) Dark microglia: why are they dark? Commun. Integr. Biol. 9:e1230575

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown GC, Neher JJ (2014) Microglial phagocytosis of live neurons. Nat Rev Neurosci 15:209–216

    Article  CAS  PubMed  Google Scholar 

  • Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, Klein M, Blank T, Yona S, Wolf Y (2015) Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43:92–106

    Article  CAS  PubMed  Google Scholar 

  • Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE (2014) Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143

    Article  CAS  PubMed  Google Scholar 

  • Butowski N, Colman H, De Groot JF, Omuro AM, Nayak L, Wen PY, Cloughesy TF, Marimuthu A, Haidar S, Perry A (2015) Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol 18:557–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Cengiz P, Zafer D, Chandrashekhar JH, Chanana V, Bogost J, Waldman A, Novak B, Kintner DB, Ferrazzano PA (2019) Developmental differences in microglia morphology and gene expression during normal brain development and in response to hypoxia-ischemia. Neurochem Int 127:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalmers SA, Wen J, Shum J, Doerner J, Herlitz L, Putterman C (2017) CSF-1R inhibition attenuates renal and neuropsychiatric disease in murine lupus. Clin Immunol 185:100–108

    Article  CAS  PubMed  Google Scholar 

  • Coleman LG, Zou J, Crews FT (2020) Microglial depletion and repopulation in brain slice culture normalizes sensitized proinflammatory signaling. J Neuroinflammation 17:1–20

    Article  Google Scholar 

  • Conway JG, McDonald B, Parham J, Keith B, Rusnak DW, Shaw E, Jansen M, Lin P, Payne A, Crosby RM (2005) Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580. Proc Natl Acad Sci 102:16078–16083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crapser JD, Ochaba J, Soni N, Reidling JC, Thompson LM, Green KN (2020) Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington’s disease. Brain 143:266–288

    Article  PubMed  Google Scholar 

  • Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E, Goldman DH, Smirnov I, Geraci N, Acton S (2018) Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 215:1627–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, Orsolits B, Molnár G, Heindl S, Schwarcz AD (2020) Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367:528–537

    Article  PubMed  Google Scholar 

  • Dagher NN, Najafi AR, Neely KM, Kayala MRP, Elmore TE, White RM, West BL, Green KN (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12:1–14

    Article  CAS  Google Scholar 

  • Dani JA, Adron Harris R (2005) Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nat Neurosci 8:1465–1470

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Mathur V, Ho PP, James ML, Lucin KM, Hoehne A, Alabsi H, Gambhir SS, Steinman L, Luo J (2014) Antiviral drug ganciclovir is a potent inhibitor of microglial proliferation and neuroinflammation. J Exp Med 211:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorrier CE, Aran D, Haenelt EA, Sheehy RN, Hoi KK, Pintarić L, Chen Y, Lizama CO, Cautivo KM, Weiner GA (2021) CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci 24:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore MRP, Lee RJ, West BL, Green KN (2015) Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation. PLoS ONE 10:e0122912

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerber YN, Saint-Martin GP, Bringuier CM, Bartolami S, Goze-Bac C, Noristani HN, Perrin FE (2018) CSF1R inhibition reduces microglia proliferation, promotes tissue preservation and improves motor recovery after spinal cord injury. Front Cell Neurosci 12:368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Nicola D, Fransen NL, Suzzi S, Hugh Perry V (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33:2481–2493

    Article  PubMed  PubMed Central  Google Scholar 

  • Grathwohl SA, Kälin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S (2009) Formation and maintenance of Alzheimer’s disease β-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green KN, Crapser JD, Hohsfield LA (2020) To kill a microglia: a case for CSF1R inhibitors. Trends Immunol 41:771–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemeyer N, Hanft K-M, Akriditou M-A, Unger N, Park ES, Richard Stanley E, Staszewski O, Dimou L, Prinz M (2017) Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol 134:441–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50:253–71 e6

    Article  Google Scholar 

  • Han W, Umekawa T, Zhou K, Zhang X-M, Ohshima M, Dominguez CA, Harris RA, Zhu C, Blomgren K (2016) Cranial irradiation induces transient microglia accumulation, followed by long-lasting inflammation and loss of microglia. Oncotarget 7:82305

    Article  PubMed  PubMed Central  Google Scholar 

  • Han J, Harris RA, Zhang X-M (2017) An updated assessment of microglia depletion: current concepts and future directions. Mol Brain 10:1–8

    Article  Google Scholar 

  • Han J, Zhu K, Zhang X-M, Harris RA (2019a) Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia 67:217–231

    Article  PubMed  Google Scholar 

  • Han X, Li Q, Lan Xi, El-Mufti L, Ren H, Wang J (2019b) Microglial depletion with clodronate liposomes increases proinflammatory cytokine levels, induces astrocyte activation, and damages blood vessel integrity. Mol Neurobiol 56:6184–6196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Healy LM, Zia S, Plemel JR (2022) Towards a definition of microglia heterogeneity. Commun Biol 5:1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellwig S, Heinrich A, Biber K (2013) The brain’s best friend: microglial neurotoxicity revisited. Front Cell Neurosci 7:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry RJ, Ritzel RM, Barrett JP, Doran SJ, Jiao Y, Leach JB, Szeto GL, Junfang Wu, Stoica BA, Faden AI (2020) Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J Neurosci 40:2960–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hövelmeyer N, Waisman A, Rülicke T, Prinz M, Priller J (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152

    Article  CAS  PubMed  Google Scholar 

  • Hoarau J-J, Krejbich-Trotot P, Jaffar-Bandjee M-C, Das T, Thon-Hon G-V, Kumar S, Neal JW, Gasque P (2011) Activation and control of CNS innate immune responses in health and diseases: a balancing act finely tuned by neuroimmune regulators (NIReg). CNS Neurol Disord Drug Targets 10:25–43

    Article  CAS  PubMed  Google Scholar 

  • Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, Beaudin AE, Lum J, Low I, Camilla Forsberg E (2015) C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Zhen Xu, Xiong S, Sun F, Qin G, Guanglei Hu, Wang J, Zhao L, Liang Y-X, Tianzhun Wu (2018) Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci 21:530–540

    Article  CAS  PubMed  Google Scholar 

  • Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin X, Yamashita T (2016) Microglia in central nervous system repair after injury. J Biochem 159:491–496

    Article  CAS  PubMed  Google Scholar 

  • Jin W-N, Shi S-Y, Li Z, Li M, Wood K, Gonzales RJ, Liu Q (2017) Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab 37:2224–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser T, Feng G (2019) Tmem119-EGFP and Tmem119-CreERT2 transgenic mice for labeling and manipulating microglia. eneuro 6.

  • Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–90 e17

    Article  Google Scholar 

  • Kim CC, Nakamura MC, Hsieh CL (2016) Brain trauma elicits non-canonical macrophage activation states. J Neuroinflammation 13:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehenkari PP, Kellinsalmi M, Näpänkangas JP, Ylitalo KV, Mönkkönen J, Rogers MJ, Alex Azhayev H, Väänänen K, Hassinen IE (2002) Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 61:1255–1262

    Article  CAS  PubMed  Google Scholar 

  • Lei F, Cui N, Zhou C, Chodosh J, Vavvas DG, Paschalis EI (2020) CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages. Proc Natl Acad Sci 117:23336–23338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Li Z, Ren H, Jin W-N, Wood K, Liu Q, Sheth KN, Shi F-D (2017) Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 37:2383–2395

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang F (2017) Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol 8:1005

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Given KS, Dickson EL, Owens GP, Macklin WB, Bennett JL (2019) Concentration-dependent effects of CSF1R inhibitors on oligodendrocyte progenitor cells ex vivo and in vivo. Exp Neurol 318:32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G, Carradori D, Dillenburg A, Borger E, Soong D, Richardson JC (2019) Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat Neurosci 22:1046–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7:366–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, Kular L, Needhamsen M, Espinosa A, Nilsson E (2018) Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun 9:1–13

    Article  CAS  Google Scholar 

  • Lyu J, Xie Di, Bhatia TN, Leak RK, Xiaoming Hu, Jiang X (2021) Microglial/Macrophage polarization and function in brain injury and repair after stroke. CNS Neurosci Ther 27:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Muriana A, Mancuso R, Francos-Quijorna I, Olmos-Alonso A, Rosario Osta V, Perry H, Navarro X, Gomez-Nicola D, López-Vales R (2016) CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves. Sci Rep 6:1–13

    Article  Google Scholar 

  • Masuda T, Sankowski R, Staszewski O, Prinz M (2020) Microglia heterogeneity in the single-cell era. Cell Rep 30:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • McGrath KE, Koniski AD, Malik J, Palis J (2003) Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101:1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Mildner A, Mack M, Schmidt H, Brück W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M (2009) CCR2+ Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132:2487–2500

    Article  PubMed  Google Scholar 

  • Milinkeviciute G, Henningfield CM, Muniak MA, Chokr SM, Green KN, Cramer KS (2019) Microglia regulate pruning of specialized synapses in the auditory brainstem. Front Neural Circuits 13:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE (2012) The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188:29–36

    Article  CAS  PubMed  Google Scholar 

  • Najafi AR, Crapser J, Jiang S, Ng W, Mortazavi A, West BL, Green KN (2018) A limited capacity for microglial repopulation in the adult brain. Glia 66:2385–2396

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neal ML, Fleming SM, Budge KM, Boyle AM, Kim C, Alam G, Beier EE, Long-Jun Wu, Richardson JR (2020) Pharmacological inhibition of CSF1R by GW2580 reduces microglial proliferation and is protective against neuroinflammation and dopaminergic neurodegeneration. FASEB J 34:1679–1694

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • O’Neil SM, Witcher KG, McKim DB, Godbout JP (2018) Forced turnover of aged microglia induces an intermediate phenotype but does not rebalance CNS environmental cues driving priming to immune challenge. Acta Neuropathol Commun 6:1–20

    Article  Google Scholar 

  • Olmos-Alonso A, Schetters STT, Sri S, Askew K, Mancuso R, Vargas-Caballero M, Christian Holscher V, Perry H, Gomez-Nicola D (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139:891–907

    Article  PubMed  PubMed Central  Google Scholar 

  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    Article  CAS  PubMed  Google Scholar 

  • Paolicelli RC, Sierra A, Stevens B, Tremblay M-E, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M (2022) Microglia states and nomenclature: a field at its crossroads. Neuron 110:3458–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhurst CN, Yang G, Ninan I, Savas JN, Yates III JR, Lafaille JJ, Hempstead BL, Littman DR, Gan W-B (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pósfai B, Cserép C, Orsolits B, Dénes Á (2019) New insights into microglia–neuron interactions: a neuron’s perspective. Neuroscience 405:103–117

    Article  PubMed  Google Scholar 

  • Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312

    Article  CAS  PubMed  Google Scholar 

  • Prokop S, Miller KR, Drost N, Handrick S, Mathur V, Luo J, Wegner A, Wyss-Coray T, Heppner FL (2015) Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer’s disease–like mice. J Exp Med 212:1811–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468:253–262

    Article  CAS  PubMed  Google Scholar 

  • Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RPS, Hernandez MX, Tenner AJ, West BL, Green KN (2015) Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci 35:9977–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez AM, Victoria Delpino M, Cruz Miraglia M, Costa MM, Franco PB, Dennis VA, Oliveira SC, Giambartolomei GH (2017) Brucella abortus-activated microglia induce neuronal death through primary phagocytosis. Glia 65:1137–1151

    Article  PubMed  Google Scholar 

  • Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027

    Article  CAS  PubMed  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SEW, Pollard JW (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Manis M, Long J, Wang K, Sullivan PM, Serrano JR, Hoyle R, Holtzman DM (2019) Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J Exp Med 216:2546–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Zhang J, Shang Z, Zhang Y, Xia Y, Fu H, Yu T (2022) Restorative therapy using microglial depletion and repopulation for central nervous system injuries and diseases. Front Immunol 13

  • Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13:171–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Spangenberg EE, Green KN (2017) Inflammation in Alzheimer’s disease: lessons learned from microglia-depletion models. Brain Behav Immun 61:1–11

    Article  CAS  PubMed  Google Scholar 

  • Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MRP, Blurton-Jones M, West BL, Green KN (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139:1265–1281

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiller KJ, Restrepo CR, Khan T, Dominique MA, Fang TC, Canter RG, Roberts CJ, Miller KR, Ransohoff RM, Trojanowski JQ (2018) Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 21:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, Bessis A, Ginhoux F, Garel S (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Suh H-S, Lo Y, Choi N, Letendre S, Lee SC (2014) Evidence of the innate antiviral and neuroprotective properties of progranulin. PLoS ONE 9:e98184

    Article  PubMed  PubMed Central  Google Scholar 

  • Szalay G, Martinecz B, Lénárt N, Környei Z, Orsolits B, Judák L, Császár E, Fekete R, West BL, Katona G (2016) Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7:1–13

    Article  Google Scholar 

  • Tahmasebi F, Barati S, Kashani IR (2021) Effect of CSF1R inhibitor on glial cells population and remyelination in the cuprizone model. Neuropeptides 89:102179

    Article  CAS  PubMed  Google Scholar 

  • Takeda A, Shinozaki Y, Kashiwagi K, Ohno N, Eto K, Wake H, Nabekura J, Koizumi S (2018) Microglia mediate non-cell-autonomous cell death of retinal ganglion cells. Glia 66:2366–2384

    Article  PubMed  Google Scholar 

  • Todd L, Palazzo I, Suarez L, Liu X, Volkov L, Hoang TV, Campbell WA, Blackshaw S, Quan N, Fischer AJ (2019) Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J Neuroinflammation 16:1–19

    Article  CAS  Google Scholar 

  • Trang T, Beggs S, Salter MW (2011) Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol 7:99–108

    Article  PubMed  Google Scholar 

  • Tremblay M-È, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16:543–551

    Article  CAS  PubMed  Google Scholar 

  • Varin A, Gordon S (2009) Alternative activation of macrophages: immune function and cellular biology. Immunobiology 214:630–641

    Article  CAS  PubMed  Google Scholar 

  • Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, Thal DR, Charo IF, Heppner FL, Aguzzi A (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci 109:18150–18155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinet J, van Weering HRJ, Heinrich A, Kälin RE, Wegner A, Brouwer N, Heppner FL, van Rooijen N, Boddeke HWGM, Biber K (2012) Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflammation 9:1–15

    Article  Google Scholar 

  • Waisman A, Ginhoux F, Greter M, Bruttger J (2015) Homeostasis of microglia in the adult brain: review of novel microglia depletion systems. Trends Immunol 36:625–636

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD, Diamond MS, Colonna M (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13:753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C-F, Zhao C-C, Liu W-L, Huang X-J, Deng Y-F, Jiang J-Y, Li W-P (2020) Depletion of microglia attenuates dendritic spine loss and neuronal apoptosis in the acute stage of moderate traumatic brain injury in mice. J Neurotrauma 37:43–54

    Article  CAS  PubMed  Google Scholar 

  • Weber MD, McKim DB, Niraula A, Witcher KG, Yin W, Sobol CG, Wang Y, Sawicki CM, Sheridan JF, Godbout JP (2019) The influence of microglial elimination and repopulation on stress sensitization induced by repeated social defeat. Biol Psychiat 85:667–678

    Article  PubMed  Google Scholar 

  • Wen R-X, Shen H, Huang S-X, Wang L-P, Li Z-W, Peng P, Mamtilahun M, Tang Y-H, Shen F-X, Tian H-L (2020) P2Y6 receptor inhibition aggravates ischemic brain injury by reducing microglial phagocytosis. CNS Neurosci Ther 26:416–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendeln A-C, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, Wagner J, Häsler LM, Wild K, Skodras A (2018) Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556:332–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieghofer P, Knobeloch K-P, Prinz M (2015) Genetic targeting of microglia. Glia 63:1–22

    Article  PubMed  Google Scholar 

  • Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, Bartlett PF, Schroder WA, Yates AG, Anthony DC (2020) Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 180:833–46 e16

    Article  Google Scholar 

  • Yang H-C, Zhang M, Rui Wu, Zheng H-Q, Zhang L-Y, Luo J, Li L-L, Xi-Quan Hu (2020) CC chemokine receptor type 2-overexpressing exosomes alleviated experimental post-stroke cognitive impairment by enhancing microglia/macrophage M2 polarization. World J Stem Cells 12:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Yogev N, Frommer F, Lukas D, Kautz-Neu K, Karram K, Ielo D, von Stebut E, Probst H-C, van den Broek M, Riethmacher D (2012) Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor+ regulatory T cells. Immunity 37:264–275

    Article  CAS  PubMed  Google Scholar 

  • Zhan L, Krabbe G, Fei Du, Jones I, Reichert MC, Telpoukhovskaia M, Kodama L, Wang C, Cho S-H, Sayed F (2019) Proximal recolonization by self-renewing microglia re-establishes microglial homeostasis in the adult mouse brain. PLoS Biol 17:e3000134

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang Y, Liu T, Mao Y, Peng B (2023) Novel microglia-based therapeutic approaches to neurodegenerative disorders. Neurosci Bull 1–12

Download references

Acknowledgements

The study was supported by the Saveh University of Medical Sciences, Saveh, Iran.

Funding

This study was supported by a grant received from the Saveh University of Medical Sciences, Saveh, Iran.

Author information

Authors and Affiliations

Authors

Contributions

SB conceived the original idea, supervised the project, designed figures, and revised the manuscript. FT studies all articles and wrote the manuscript. Both authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Shirin Barati.

Ethics declarations

Conflict of interest

The authors had no conflict of interest regarding the publication of this paper.

Ethical Approval

This review article is in accordance with the ethical principles and the national norms and standards for conducting Medical Research in Iran and Saveh University of Medical Sciences (IR.SAVEHUMS.REC.1401.019).

Consent for Publication

Not applicable. There is not any patient in this research study.

Consent to Participate

Not applicable. There is not any patient in this research study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, F., Barati, S. The Role of Microglial Depletion Approaches in Pathological Condition of CNS. Cell Mol Neurobiol 43, 2459–2471 (2023). https://doi.org/10.1007/s10571-023-01326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-023-01326-8

Keywords

Navigation