Abstract
Alcohol consumption is known to cause several brain anomalies. The pathophysiological changes associated with alcohol intoxication are mediated by various factors, most notable being inflammation. Alcohol intoxication may cause inflammation through several molecular mechanisms in multiple organs, including the brain, liver and gut. Alcohol-induced inflammation in the brain and gut are intricately connected. In the gut, alcohol consumption leads to the weakening of the intestinal barrier, resulting in bacteria and bacterial endotoxins permeating into the bloodstream. These bacterial endotoxins can infiltrate other organs, including the brain, where they cause cognitive dysfunction and neuroinflammation. Alcohol can also directly affect the brain by activating immune cells such as microglia, triggering the release of pro-inflammatory cytokines and neuroinflammation. Since alcohol causes the death of neural cells, it has been correlated to an increased risk of neurodegenerative diseases. Besides, alcohol intoxication has also negatively affected neural stem cells, affecting adult neurogenesis and causing hippocampal dysfunctions. This review provides an overview of alcohol-induced brain anomalies and how inflammation plays a crucial mechanistic role in alcohol-associated pathophysiology.
Graphical Abstract
Similar content being viewed by others
Data Availability
No data and material are available as it is a review article.
References
Ahluwalia V, Wade JB, Moeller FG, White MB, Unser AB, Gavis EA, Sterling RK, Stravitz RT, Sanyal AJ, Siddiqui MS, Puri P, Luketic V, Heuman DM, Fuchs M, Matherly S, Bajaj JS (2015) The etiology of cirrhosis is a strong determinant of brain reserve: a multimodal magnetic resonance imaging study. Liver Transpl 21(9):1123–1132. https://doi.org/10.1002/lt.24163
Ahluwalia V, Betrapally NS, Hylemon PB, White MB, Gillevet PM, Unser AB, Fagan A, Daita K, Heuman DM, Zhou H, Sikaroodi M, Bajaj JS (2016) Impaired gut–liver-brain axis in patients with cirrhosis. Sci Rep 26(6):26800. https://doi.org/10.1038/srep26800
Ahmad A, Shah SA, Badshah H, Kim MJ, Ali T, Yoon GH, Kim TH, Abid NB, Rehman SU, Khan S, Kim MO (2016) Neuroprotection by vitamin C against ethanol-induced neuroinflammation associated neurodegeneration in the developing rat brain. CNS Neurol Disord Drug Targets 15(3):360–370. https://doi.org/10.2174/1871527315666151110130139
Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HL, Wheeler AL, Guskjolen A, Niibori Y, Shoji H, Ohira K, Richards BA, Miyakawa T, Josselyn SA, Frankland PW (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344(6184):598–602. https://doi.org/10.1126/science.1248903
Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30(24):8285–8295. https://doi.org/10.1523/JNEUROSCI.0976-10.2010
Alfonso-Loeches S, Ureña-Peralta JR, Morillo-Bargues MJ, Oliver-De La Cruz J, Guerri C (2014) Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front Cell Neurosci 8:216. https://doi.org/10.3389/fncel.2014.00216
Ali T, Rehman SU, Shah FA, Kim MO (2018) Acute dose of melatonin via Nrf2 dependently prevents acute ethanol-induced neurotoxicity in the developing rodent brain. J Neuroinflammation 15(1):119. https://doi.org/10.1186/s12974-018-1157-x
Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335. https://doi.org/10.1002/cne.901240303
Ambhore N, Antony S, Mali J, Kanhed A, Bhalerao A, Bhojraj S (2012) Pharmacological and biochemical interventions of cigarette smoke, alcohol, and sexual mating frequency on idiopathic rat model of Parkinson’s disease. J Young Pharm 4(3):177–183. https://doi.org/10.4103/0975-1483.100026
Amin FU, Shah SA, Kim MO (2016) Glycine inhibits ethanol-induced oxidative stress, neuroinflammation and apoptotic neurodegeneration in postnatal rat brain. Neurochem Int 96:1–12. https://doi.org/10.1016/j.neuint.2016.04.001
Anand SK, Mondal AC (2017) Cellular and molecular attributes of neural stem cell niches in adult zebrafish brain. Dev Neurobiol 77(10):1188–1205. https://doi.org/10.1002/dneu.2250
Arruda-Carvalho M, Sakaguchi M, Akers KG, Josselyn SA, Frankland PW (2011) Posttraining ablation of adult-generated neurons degrades previously acquired memories. J Neurosci 31(42):15113–15127. https://doi.org/10.1523/JNEUROSCI.3432-11.2011
Bajaj JS (2019) Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol 16(4):235–246. https://doi.org/10.1038/s41575-018-0099-1
Bajaj JS, Ridlon JM, Hylemon PB, Thacker LR, Heuman DM, Smith S, Sikaroodi M, Gillevet PM (2012) Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 302(1):G168–G175. https://doi.org/10.1152/ajpgi.00190.2011
Banan A, Keshavarzian A, Zhang L, Shaikh M, Forsyth CB, Tang Y, Fields JZ (2007) NF-kappaB activation as a key mechanism in ethanol-induced disruption of the F-actin cytoskeleton and monolayer barrier integrity in intestinal epithelium. Alcohol 41(6):447–460. https://doi.org/10.1016/j.alcohol.2007.07.003
Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N, Meabon JS, Wing EE, Morofuji Y, Cook DG, Reed MJ (2015) Lipopolysaccharide-induced blood–brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflamm 25(12):223. https://doi.org/10.1186/s12974-015-0434-1
Baradaran Z, Vakilian A, Zare M, Hashemzehi M, Hosseini M, Dinpanah H, Beheshti F (2021) Metformin improved memory impairment caused by chronic ethanol consumption during adolescent to adult period of rats: role of oxidative stress and neuroinflammation. Behav Brain Res 6(411):113399. https://doi.org/10.1016/j.bbr.2021.113399
Battista D, Ferrari CC, Gage FH, Pitossi FJ (2006) Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 23(1):83–93. https://doi.org/10.1111/j.1460-9568.2005.0453
Belmadani A, Tran PB, Ren D, Miller RJ (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26(12):3182–3191. https://doi.org/10.1523/JNEUROSCI.0156-06.2006
Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E, Karussis D, Abramsky O (2003a) Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41(1):73–80. https://doi.org/10.1002/glia.10159
Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N (2003b) Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci 24(3):623–631. https://doi.org/10.1016/s1044-7431(03)00218-5
Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, Kutschera W, Johnson L, Landén M, Druid H, Spalding KL, Frisén J (2012) The age of olfactory bulb neurons in humans. Neuron 74(4):634–639. https://doi.org/10.1016/j.neuron.2012.03.030
Bertola A, Mathews S, Ki SH, Wang H, Gao B (2013) Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 8(3):627–637. https://doi.org/10.1038/nprot.2013.032
Bönsch D, Greifenberg V, Bayerlein K, Biermann T, Reulbach U, Hillemacher T, Kornhuber J, Bleich S (2005) Alpha-synuclein protein levels are increased in alcoholic patients and are linked to craving. Alcohol Clin Exp Res 29(5):763–765. https://doi.org/10.1097/01.alc.0000164360.43907.24
Boyadjieva NI, Sarkar DK (2013) Microglia play a role in ethanol-induced oxidative stress and apoptosis in developing hypothalamic neurons. Alcohol Clin Exp Res 37(2):252–262. https://doi.org/10.1111/j.1530-0277.2012.01889.x
Bühler M, Mann K (2011) Alcohol and the human brain: a systematic review of different neuroimaging methods. Alcohol Clin Exp Res 35(10):1771–1793. https://doi.org/10.1111/j.1530-0277.2011.01540.x
Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31(1):149–160. https://doi.org/10.1016/j.mcn.2005.10.006
Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435(4):406–417. https://doi.org/10.1002/cne.1040
Cannon AR, Hammer AM, Choudhry MA (2018) Alcohol, inflammation, and depression: the gut–brain axis. Inflammation and immunity in depression. Academic Press, Boca Raton, pp 509–524
Chaturvedi A, Rao G, Praharaj SK, Guruprasad KP, Pais V (2020) Reduced serum levels of cluster of differentiation 200 in alcohol-dependent patients. Alcohol Alcohol 55(4):391–394. https://doi.org/10.1093/alcalc/agaa033
Cippitelli A, Domi E, Ubaldi M, Douglas JC, Li HW, Demopulos G, Gaitanaris G, Roberto M, Drew PD, Kane CJM, Ciccocioppo R (2017) Protection against alcohol-induced neuronal and cognitive damage by the PPARγ receptor agonist pioglitazone. Brain Behav Immun 64:320–329. https://doi.org/10.1016/j.bbi.2017.02.001
Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325(5937):210–213. https://doi.org/10.1126/science.1173215
Coleman LG Jr, Crews FT (2018) Innate immune signaling and alcohol use disorders. Handb Exp Pharmacol 248:369–396. https://doi.org/10.1007/164_2018_92
Coleman LG Jr, Zou J, Crews FT (2017) Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J Neuroinflammation 14(1):22. https://doi.org/10.1186/s12974-017-0799-4
Covacu R, Perez Estrada C, Arvidsson L, Svensson M, Brundin L (2014) Change of fate commitment in adult neural progenitor cells subjected to chronic inflammation. J Neurosci 34(35):11571–11582. https://doi.org/10.1523/JNEUROSCI.0231-14.2014
Crews FT, Nixon K (2009) Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol (oxford, Oxfordshire) 44(2):115–127. https://doi.org/10.1093/alcalc/agn079
Crews FT, Vetreno RP (2014) Chapter Ten-Neuroimmune basis of alcoholic brain damage. In: Cui C, Shurtleff D, Harris RA (eds) International review of neurobiology, vol 118. Academic Press, Boca Raton, pp 315–357
Crews FT, Mdzinarishvili A, Kim D, He J, Nixon K (2006) Neurogenesis in adolescent brain is potently inhibited by ethanol. Neuroscience 137(2):437–445. https://doi.org/10.1016/j.neuroscience.2005.08.090
Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, Qin L, Szabo G, Wheeler M, Zou J (2006) Cytokines and alcohol. Alcohol Clin Exp Res 30(4):720–730. https://doi.org/10.1111/j.1530-0277.2006.00084.x
Crews FT, Zou J, Coleman LG Jr (2021) Extracellular microvesicles promote microglia-mediated pro-inflammatory responses to ethanol. J Neurosci Res 99(8):1940–1956. https://doi.org/10.1002/jnr.24813
Crutcher KA, Gendelman HE, Kipnis J, Perez-Polo JR, Perry VH, Popovich PG, Weaver LC (2006) Debate: “Is increasing neuroinflammation beneficial for neural repair?” J Neuroimmune Pharmacol 1(3):195–211. https://doi.org/10.1007/s11481-006-9021-7
Das J et al (2006) 2-Aminothiazole as a novel kinase inhibitor template. Structure–activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl] amino)]-1, 3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem 49(23):6819–6832. https://doi.org/10.1021/jm060727j
De Filippis L, Halikere A, McGowan H, Moore JC, Tischfield JA, Hart RP, Pang ZP (2016) Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain 9(1):51. https://doi.org/10.1186/s13041-016-0221-7
de la Monte SM, Kril JJ (2014) Human alcohol-related neuropathology. Acta Neuropathol 127(1):71–90. https://doi.org/10.1007/s00401-013-1233-3
Drew MR, Denny CA, Hen R (2010) Arrest of adult hippocampal neurogenesis in mice impairs single-but not multiple-trial contextual fear conditioning. Behav Neurosci 124(4):446–454. https://doi.org/10.1037/a0020081
Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJ (2015) Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 39(3):445–454. https://doi.org/10.1111/acer.12639
Einstein O, Kol R, Reinhartz E, Ben-Menachem O, Karussis D, Abramsky O, Ben-Hur T (2002) Transplanted neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Wiley, New York, pp S89–S89
Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A (2015) The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res 37(2):223–236
Epp JR, Silva Mera R, Köhler S, Josselyn SA, Frankland PW (2016) Neurogenesis-mediated forgetting minimizes proactive interference. Nat Commun 26(7):10838. https://doi.org/10.1038/ncomms10838
Eriksson AK, Löfving S, Callaghan RC, Allebeck P (2013) Alcohol use disorders and risk of Parkinson’s disease: findings from a Swedish national cohort study 1972–2008. BMC Neurol 5(13):190. https://doi.org/10.1186/1471-2377-13-190
Fabricius K, Pakkenberg H, Pakkenberg B (2007) No changes in neocortical cell volumes or glial cell numbers in chronic alcoholic subjects compared to control subjects. Alcohol Alcohol 42(5):400–406. https://doi.org/10.1093/alcalc/agm007
Fernandez-Lizarbe S, Montesinos J, Guerri C (2013) Ethanol induces TLR4/TLR2 association, triggering an inflammatory response in microglial cells. J Neurochem 126(2):261–273. https://doi.org/10.1111/jnc.12276
Forsyth CB, Voigt RM, Burgess HJ, Swanson GR, Keshavarzian A (2015) Circadian rhythms, alcohol and gut interactions. Alcohol 49(4):389–398. https://doi.org/10.1016/j.alcohol.2014.07.021
Forsythe P, Bienenstock J, Kunze WA (2014) Vagal pathways for microbiome–brain–gut axis communication. Adv Exp Med Biol 817:115–133. https://doi.org/10.1007/978-1-4939-0897-4_5
Gabr AA, Lee HJ, Onphachanh X, Jung YH, Kim JS, Chae CW, Han HJ (2017) Ethanol-induced PGE2 up-regulates Aβ production through PKA/CREB signaling pathway. Biochim Biophys Acta Mol Basis Dis 1863(11):2942–2953. https://doi.org/10.1016/j.bbadis.2017.06.020
García-Baos A, Puig-Reyne X, García-Algar Ó, Valverde O (2021) Cannabidiol attenuates cognitive deficits and neuroinflammation induced by early alcohol exposure in a mice model. Biomed Pharmacother 141:111813. https://doi.org/10.1016/j.biopha.2021.111813
Geil CR, Hayes DM, McClain JA, Liput DJ, Marshall SA, Chen KY, Nixon K (2014) Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects. Prog Neuropsychopharmacol Biol Psychiatry 3(54):103–113. https://doi.org/10.1016/j.pnpbp.2014.05.003
Ghosh SS et al (2020) Intestinal barrier function and metabolic/liver diseases. Liver Res 4(2):81–87. https://doi.org/10.1016/j.livres.2020.03.002
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. https://doi.org/10.1016/j.cell.2010.02.016
Golub HM, Zhou QG, Zucker H, McMullen MR, Kokiko-Cochran ON, Ro EJ, Nagy LE, Suh H (2015) Chronic alcohol exposure is associated with decreased neurogenesis, aberrant integration of newborn neurons, and cognitive dysfunction in female mice. Alcohol Clin Exp Res 39(10):1967–1977. https://doi.org/10.1111/acer.12843
Gómez GI, Falcon RV, Maturana CJ, Labra VC, Salgado N, Rojas CA, Oyarzun JE, Cerpa W, Quintanilla RA, Orellana JA (2018) Heavy alcohol exposure activates astroglial hemichannels and pannexons in the hippocampus of adolescent rats: effects on neuroinflammation and astrocyte arborization. Front Cell Neurosci 4(12):472. https://doi.org/10.3389/fncel.2018.00472
Gonca S, Filiz S, Dalçik C, Yardimoğlu M, Dalçik H, Yazir Y, Erden BF (2005) Effects of chronic ethanol treatment on glial fibrillary acidic protein expression in adult rat optic nerve: an immunocytochemical study. Cell Biol Int 29(2):169–172. https://doi.org/10.1016/j.cellbi.2004.11.020
Goodlett CR, Horn KH, Zhou FC (2005) Alcohol teratogenesis: mechanisms of damage and strategies for intervention. Exp Biol Med (maywood) 230(6):394–406. https://doi.org/10.1177/15353702-0323006-07
Gorky J, Schwaber J (2016) The role of the gut–brain axis in alcohol use disorders. Progr Neuro-Psychopharmacol Biol Psychiatry 65:234–241
Hansson AC, Nixon K, Rimondini R, Damadzic R, Sommer WH, Eskay R, Crews FT, Heilig M (2010) Long-term suppression of forebrain neurogenesis and loss of neuronal progenitor cells following prolonged alcohol dependence in rats. Int J Neuropsychopharmacol 13(5):583–593. https://doi.org/10.1017/S1461145710000246
Häussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S (2000) Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32(6):1035–1038. https://doi.org/10.1016/s0168-8278(00)80110-5
Hayes DM, Nickell CG, Chen KY, McClain JA, Heath MM, Deeny MA, Nixon K (2018) Activation of neural stem cells from quiescence drives reactive hippocampal neurogenesis after alcohol dependence. Neuropharmacology 1(133):276–288. https://doi.org/10.1016/j.neuropharm.2018.01.032
He J, Crews FT (2008) Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 210(2):349–358. https://doi.org/10.1016/j.expneurol.2007.11.017
Hendrikx T, Duan Y, Wang Y, Oh JH, Alexander LM, Huang W, Stärkel P, Ho SB, Gao B, Fiehn O, Emond P, Sokol H, van Pijkeren JP, Schnabl B (2019) Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut 68(8):1504–1515. https://doi.org/10.1136/gutjnl-2018-317232
Hoefer ME, Pennington DL, Durazzo TC, Mon A, Abé C, Truran D, Hutchison KE, Meyerhoff DJ (2014) Genetic and behavioral determinants of hippocampal volume recovery during abstinence from alcohol. Alcohol 48(7):631–638. https://doi.org/10.1016/j.alcohol.2014.08.00
Holownia A, Ledig M, Braszko JJ, Ménez JF (1999) Acetaldehyde cytotoxicity in cultured rat astrocytes. Brain Res 833(2):202–208. https://doi.org/10.1016/s0006-8993(99)01529-2
Huber C, Marschallinger J, Tempfer H, Furtner T, Couillard-Despres S, Bauer HC, Rivera FJ, Aigner L (2011) Inhibition of leukotriene receptors boosts neural progenitor proliferation. Cell Physiol Biochem 28(5):793–804. https://doi.org/10.1159/000335793
Ibáñez F, Montesinos J, Ureña-Peralta JR, Guerri C, Pascual M (2019) TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles. J Neuroinflammation 16(1):136. https://doi.org/10.1186/s12974-019-1529-x
Ibáñez F, Ureña-Peralta JR, Costa-Alba P, Torres JL, Laso FJ, Marcos M, Guerri C, Pascual M (2020) Circulating MicroRNAs in extracellular vesicles as potential biomarkers of alcohol-induced neuroinflammation in adolescence: gender differences. Int J Mol Sci 21(18):6730. https://doi.org/10.3390/ijms21186730
Ikram M, Saeed K, Khan A, Muhammad T, Khan MS, Jo MG, Rehman SU, Kim MO (2019) Natural dietary supplementation of curcumin protects mice brains against ethanol-induced oxidative stress-mediated neurodegeneration and memory impairment via Nrf2/TLR4/RAGE signaling. Nutrients 11(5):1082. https://doi.org/10.3390/nu11051082
Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101(52):18117–18122. https://doi.org/10.1073/pnas.0408258102
Imran M, Al Kury LT, Nadeem H, Shah FA, Abbas M, Naz S, Khan AU, Li S (2020) Benzimidazole containing acetamide derivatives attenuate neuroinflammation and oxidative stress in ethanol-induced neurodegeneration. Biomolecules 10(1):108. https://doi.org/10.3390/biom10010108
Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z, Jacobsen SE, Lindvall O (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26(38):9703–9712. https://doi.org/10.1523/JNEUROSCI.2723-06.2006
Ishii KK, Touhara K (2019) Neural circuits regulating sexual behaviors via the olfactory system in mice. Neurosci Res 140:59–76. https://doi.org/10.1016/j.neures.2018.10.009
Jaeger V, DeMorrow S, McMillin M (2019) The direct contribution of astrocytes and microglia to the pathogenesis of hepatic encephalopathy. J Clin Transl Hepatol 7(4):352–361. https://doi.org/10.14218/JCTH.2019.00025
Ju C, Mandrekar P (2015) Macrophages and alcohol-related liver inflammation. Alcohol Res 37(2):251–262
Kalehua A et al (1992) Chronic ethanol treatment promotes aberrant microglial morphology in area CA1 of the rat hippocampus. Alcohol Clin Exp Res 16(2):401
Kalinin S, González-Prieto M, Scheiblich H, Lisi L, Kusumo H, Heneka MT, Madrigal JLM, Pandey SC, Feinstein DL (2018) Transcriptome analysis of alcohol-treated microglia reveals downregulation of beta amyloid phagocytosis. J Neuroinflamm 15(1):141. https://doi.org/10.1186/s12974-018-1184-7
Kamal H, Tan GC, Ibrahim SF, Shaikh MF, Mohamed IN, Mohamed RMP, Hamid AA, Ugusman A, Kumar J (2020) Alcohol use disorder, neurodegeneration, Alzheimer’s and Parkinson’s disease: interplay between oxidative stress, neuroimmune response and excitotoxicity. Front Cell Neurosci 31(14):282. https://doi.org/10.3389/fncel.2020.00282
Keller M, Douhard Q, Baum MJ, Bakker J (2006) Sexual experience does not compensate for the disruptive effects of zinc sulfate–lesioning of the main olfactory epithelium on sexual behavior in male mice. Chem Senses 31(8):753–762. https://doi.org/10.1093/chemse/bjl018
Keshav S (2006) Paneth cells: leukocyte-like mediators of innate immunity in the intestine. J Leukoc Biol 80(3):500–508. https://doi.org/10.1189/jlb.1005556
Kessels RP, Kortrijk HE, Wester AJ, Nys GM (2008) Confabulation behavior and false memories in Korsakoff’s syndrome: role of source memory and executive functioning. Psychiatry Clin Neurosci 62(2):220–225. https://doi.org/10.1111/j.1440-1819.2008.01758.x
Kim SR, Jeong HY, Yang S, Choi SP, Seo MY, Yun YK, Choi Y, Baik SH, Park JS, Gwon AR, Yang DK, Lee CH, Lee SM, Park KW, Jo DG (2011) Effects of chronic alcohol consumption on expression levels of APP and Aβ-producing enzymes. BMB Rep 44(2):135–139. https://doi.org/10.5483/BMBRep.2011.44.2.135
King JA, Nephew BC, Choudhury A, Poirier GL, Lim A, Mandrekar P (2020) Chronic alcohol-induced liver injury correlates with memory deficits: role for neuroinflammation. Alcohol 83:75–81. https://doi.org/10.1016/j.alcohol.2019.07.005
Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K (2009) Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139(4):814–827. https://doi.org/10.1016/j.cell.2009.10.020
Kok EH, Karppinen TT, Luoto T, Alafuzoff I, Karhunen PJ (2016) Beer drinking associates with lower burden of amyloid beta aggregation in the brain: Helsinki sudden death series. Alcohol Clin Exp Res 40(7):1473–1478. https://doi.org/10.1111/acer.13102
Koning JJ, Kooij G, de Vries HE, Nolte MA, Mebius RE (2013) Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol 4(4):49. https://doi.org/10.3389/fimmu.2013.00049
Kouzoukas DE, Schreiber JA, Tajuddin NF, Kaja S, Neafsey EJ, Kim HY, Collins MA (2019) PARP inhibition in vivo blocks alcohol-induced brain neurodegeneration and neuroinflammatory cytosolic phospholipase A2 elevations. Neurochem Int 129:104497. https://doi.org/10.1016/j.neuint.2019.104497
Kyritsis N, Kizil C, Brand M (2014) Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol 24(2):128–135. https://doi.org/10.1016/j.tcb.2013.08.004
Le Maître TW, Dhanabalan G, Bogdanovic N, Alkass K, Druid H (2018) Effects of alcohol abuse on proliferating cells, stem/progenitor cells, and immature neurons in the adult human hippocampus. Neuropsychopharmacology 43(4):690–699. https://doi.org/10.1038/npp.2017.251
Leclercq S, Cani PD, Neyrinck AM, Stärkel P, Jamar F, Mikolajczak M, Delzenne NM, de Timary P (2012) Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain Behav Immun 26(6):911–918. https://doi.org/10.1016/j.bbi.2012.04.001
Leclercq S, Matamoros S, Cani PD, Neyrinck AM, Jamar F, Stärkel P, Windey K, Tremaroli V, Bäckhed F, Verbeke K, de Timary P, Delzenne NM (2014) Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci USA 111(42):E4485–E4493. https://doi.org/10.1073/pnas.1415174111
Leclercq S, De Saeger C, Delzenne N, de Timary P, Stärkel P (2014) Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol Psychiatry 76(9):725–733. https://doi.org/10.1016/j.biopsych.2014.02.003
Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kälin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15(6):827–835. https://doi.org/10.1038/nn.3113
Li Q, Liu D, Pan F, Ho CSH, Ho RCM (2019) Ethanol exposure induces microglia activation and neuroinflammation through TLR4 activation and SENP6 modulation in the adolescent rat hippocampus. Neural Plast 12(2019):1648736. https://doi.org/10.1155/2019/1648736
Lippai D, Bala S, Petrasek J, Csak T, Levin I, Kurt-Jones EA, Szabo G (2013a) Alcohol-induced IL-1β in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J Leukoc Biol 94(1):171–182. https://doi.org/10.1189/jlb.1212659
Lippai D, Bala S, Csak T, Kurt-Jones EA, Szabo G (2013b) Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice. PLoS ONE 8(8):e70945. https://doi.org/10.1371/journal.pone.0070945
Liu Z, Fan Y, Won SJ, Neumann M, Hu D, Zhou L, Weinstein PR, Liu J (2007) Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke 38(1):146–152. https://doi.org/10.1161/01.STR.0000251791.64910.cd
Liu R, Guo X, Park Y, Wang J, Huang X, Hollenbeck A, Blair A, Chen H (2013) Alcohol consumption, types of alcohol, and Parkinson’s disease. PLoS ONE 8(6):e66452. https://doi.org/10.1371/journal.pone.0066452
Liu DY, Lou WJ, Zhang DY, Sun SY (2020) ROS plays a role in the neonatal rat intestinal barrier damages induced by hyperoxia. Biomed Res Int 26(2020):8819195. https://doi.org/10.1155/2020/8819195
López-Oropeza G, Durán P, Martínez-Canabal A (2022) Maternal enrichment increases infantile spatial amnesia mediated by postnatal neurogenesis modulation. Front Behav Neurosci 25(16):971359. https://doi.org/10.3389/fnbeh.2022.971359
Lowe PP, Cho Y, Tornai D, Coban S, Catalano D, Szabo G (2020) Inhibition of the inflammasome signaling cascade reduces alcohol consumption in female but not male mice. Alcohol Clin Exp Res 44(2):567–578. https://doi.org/10.1111/acer.14272
Mäkelä J, Koivuniemi R, Korhonen L, Lindholm D (2010) Interferon-gamma produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells. PLoS ONE 5(6):e11091. https://doi.org/10.1371/journal.pone.0011091
Malva JO, Xapelli S, Baptista S, Valero J, Agasse F, Ferreira R, Silva AP (2012) Multifaces of neuropeptide Y in the brain–neuroprotection, neurogenesis and neuroinflammation. Neuropeptides 46(6):299–308. https://doi.org/10.1016/j.npep.2012.09.001
Marín-Burgin A, Schinder AF (2012) Requirement of adult-born neurons for hippocampus-dependent learning. Behav Brain Res 227(2):391–399. https://doi.org/10.1016/j.bbr.2011.07.001
Marshall SA, McClain JA, Kelso ML, Hopkins DM, Pauly JR (2013) Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype. Neurobiol Dis 54:239–251
Marshall SA, Geil CR, Nixon K (2016) Prior binge ethanol exposure potentiates the microglial response in a model of alcohol-induced neurodegeneration. Brain Sci 6(2):16. https://doi.org/10.3390/brainsci6020016
Martinez-Canabal A (2014) Reconsidering hippocampal neurogenesis in Alzheimer’s disease. Front Neurosci 11(8):147. https://doi.org/10.3389/fnins.2014.00147
Mathieu P, Battista D, Depino A, Roca V, Graciarena M, Pitossi F (2010) The more you have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. J Neurochem 112(6):1368–1385. https://doi.org/10.1111/j.1471-4159.2009.06548.x
McClain JA, Morris SA, Deeny MA, Marshall SA, Hayes DM, Kiser ZM, Nixon K (2011) Adolescent binge alcohol exposure induces long-lasting partial activation of microglia. Brain Behav Immunol 25:S120–S128. https://doi.org/10.1016/j.bbi.2011.01.006
Melbourne JK, Thompson KR, Peng H, Nixon K (2019) Its complicated: the relationship between alcohol and microglia in the search for novel pharmacotherapeutic targets for alcohol use disorders. Prog Mol Biol Transl Sci 167:179–221. https://doi.org/10.1016/bs.pmbts.2019.06.011
Mishra V, Agas A, Schuetz H, Kalluru J, Haorah J (2020) Alcohol induces programmed death receptor-1 and programmed death-ligand-1 differentially in neuroimmune cells. Alcohol 86:65–74. https://doi.org/10.1016/j.alcohol.2020.03.009
Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765. https://doi.org/10.1126/science.1088417
Moriyama M, Fukuhara T, Britschgi M, He Y, Narasimhan R, Villeda S, Molina H, Huber BT, Holers M, Wyss-Coray T (2011) Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis. J Neurosci 31(11):3981–3989. https://doi.org/10.1523/JNEUROSCI.3617-10.2011
Mourkioti F, Rosenthal N (2005) IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol 26(10):535–542. https://doi.org/10.1016/j.it.2005.08.002
Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A, Engen PA, Kwasny M, Lau CK, Keshavarzian A (2012) Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol 302(9):G966–G978. https://doi.org/10.1152/ajpgi.00380.2011
Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, Rodriguez Barrera V, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1):188–201. https://doi.org/10.1016/j.cell.2012.01.046
Nath B, Levin I, Csak T, Petrasek J, Mueller C, Kodys K, Catalano D, Mandrekar P, Szabo G (2011) Hepatocyte-specific hypoxia-inducible factor-1α is a determinant of lipid accumulation and liver injury in alcohol-induced steatosis in mice. Hepatology 53(5):1526–1537. https://doi.org/10.1002/hep.24256
Nawarawong NN, Thompson KR, Guerin SP, Anasooyashaji C, Peng H, Nixon K (2021) Reactive, adult neurogenesis from increased neural progenitor cell proliferation following alcohol dependence in female rats. Front Neurosci. https://doi.org/10.3389/fnins.2021.689601
Nixon K (2006) Alcohol and adult neurogenesis: roles in neurodegeneration and recovery in chronic alcoholism. Hippocampus 16(3):287–295. https://doi.org/10.1002/hipo.20162
Nixon K, Crews FT (2004) Temporally specific burst in cell proliferation increases hippocampal neurogenesis in protracted abstinence from alcohol. J Neurosci 24(43):9714–9722. https://doi.org/10.1523/jneurosci.3063-04.2004
Nixon K, Kim DH, Potts EN, He J, Crews FT (2008) Distinct cell proliferation events during abstinence after alcohol dependence: microglia proliferation precedes neurogenesis. Neurobiol Dis 31(2):218–229. https://doi.org/10.1016/j.nbd.2008.04.009
Novier A, Van Skike CE, Diaz-Granados JL, Mittleman G, Matthews DB (2013) Acute alcohol produces ataxia and cognitive impairments in aged animals: a comparison between young adult and aged rats. Alcohol Clin Exp Res 37(8):1317–1324. https://doi.org/10.1111/acer.12110
Park DH, Eve DJ, Musso J 3rd, Klasko SK, Cruz E, Borlongan CV, Sanberg PR (2009) Inflammation and stem cell migration to the injured brain in higher organisms. Stem Cells Dev 18(5):693–702. https://doi.org/10.1089/scd.2009.0008
Pascual M, Blanco AM, Cauli O, Miñarro J, Guerri C (2007) Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci 25(2):541–550. https://doi.org/10.1111/j.1460-9568.2006.05298.x
Perez-Asensio FJ, Perpiñá U, Planas AM, Pozas E (2013) Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. J Cell Sci 126(Pt 18):4208–4219. https://doi.org/10.1242/jcs.127803
Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422(6933):688–694. https://doi.org/10.1038/nature01552
Puri N, Arefiev Y, Chao R, Sacerdoti D, Chaudry H, Nichols A, Srikanthan K, Nawab A, Sharma D, Lakhani VH, Klug R, Sodhi K, Peterson SJ (2017) Heme oxygenase induction suppresses hepatic hepcidin and rescues ferroportin and ferritin expression in obese mice. J Nutr Metab 2017:4964571. https://doi.org/10.1155/2017/4964571
Qi B, Shi C, Meng J, Xu S, Liu J (2018) Resveratrol alleviates ethanol-induced neuroinflammation in vivo and in vitro: involvement of TLR2-MyD88-NF-κB pathway. Int J Biochem Cell Biol 103:56–64. https://doi.org/10.1016/j.biocel.2018.07.007
Qin L, Crews FT (2012a) Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration. J Neuroinflammation 18(9):130. https://doi.org/10.1186/1742-2094-9-130
Qin L, Crews FT (2012b) NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflamm 12(9):5. https://doi.org/10.1186/1742-2094-9-5
Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT (2008) Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 5:10. https://doi.org/10.1186/1742-2094-5-10
Qin L, Zou J, Barnett A, Vetreno RP, Crews FT, Coleman LG Jr (2021) TRAIL mediates neuronal death in AUD: a link between neuroinflammation and neurodegeneration. Int J Mol Sci 22(5):2547. https://doi.org/10.3390/ijms22052547
Rehm J, Shield KD (2019) Global burden of alcohol use disorders and alcohol liver disease. Biomedicines 7(4):99. https://doi.org/10.3390/biomedicines7040099
Ren Z, Wang X, Yang F, Xu M, Frank JA, Wang H, Wang S, Ke ZJ, Luo J (2017) Ethanol-induced damage to the developing spinal cord: the involvement of CCR2 signaling. Biochim Biophys Acta Mol Basis Dis 1863(11):2746–2761. https://doi.org/10.1016/j.bbadis.2017.07.035
Retson TA, Hoek JB, Sterling RC, Van Bockstaele EJ (2015) Amygdalar neuronal plasticity and the interactions of alcohol, sex, and stress. Brain Struct Funct 220(6):3211–3232. https://doi.org/10.1007/s00429-014-0851-4
Richardson HN, Chan SH, Crawford EF, Lee YK, Funk CK, Koob GF, Mandyam CD (2009) Permanent impairment of birth and survival of cortical and hippocampal proliferating cells following excessive drinking during alcohol dependence. Neurobiol Dis 36(1):1–10. https://doi.org/10.1016/j.nbd.2009.05.02
Rigby RJ, Simmons JG, Greenhalgh CJ, Alexander WS, Lund PK (2007) Suppressor of cytokine signaling 3 (SOCS3) limits damage-induced crypt hyper-proliferation and inflammation-associated tumorigenesis in the colon. Oncogene 26(33):4833–4841. https://doi.org/10.1038/sj.onc.1210286
Rintala J, Jaatinen P, Kiianmaa K, Riikonen J, Kemppainen O, Sarviharju M, Hervonen A (2001) Dose-dependent decrease in glial fibrillary acidic protein-immunoreactivity in rat cerebellum after lifelong ethanol consumption. Alcohol 23(1):1–8. https://doi.org/10.1016/s0741-8329(00)00116-6
Rose CF, Amodio P, Bajaj JS, Dhiman RK, Montagnese S, Taylor-Robinson SD, Vilstrup H, Jalan R (2020) Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J Hepatol 73(6):1526–1547. https://doi.org/10.1016/j.jhep.2020.07.013
Saha B, Momen-Heravi F, Kodys K, Szabo G (2016) MicroRNA Cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J Biol Chem 291(1):149–159. https://doi.org/10.1074/jbc.M115.694133
Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472(7344):466–470. https://doi.org/10.1038/nature09817
Santos LE, da Silveira GA, Costa VD, Batista AG, Madureira AP, Rodrigues AM, Scorza CA, Amorim HA, Arida RM, Duarte MA, Scorza FA, Cavalheiro EA, de Almeida AC (2013) Alcohol abuse promotes changes in non-synaptic epileptiform activity with concomitant expression changes in cotransporters and glial cells. PLoS ONE 8(11):e78854. https://doi.org/10.1371/journal.pone.0078854
Schneider R Jr, Bandiera S, Souza DG, Bellaver B, Caletti G, Quincozes-Santos A, Elisabetsky E, Gomez R (2017) N-acetylcysteine prevents alcohol related neuroinflammation in rats. Neurochem Res 42(8):2135–2141. https://doi.org/10.1007/s11064-017-2218-8
Schwartz M, Baruch K (2014) The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 33(1):7–22. https://doi.org/10.1002/embj.201386609
Schwartz M, Kipnis J, Rivest S, Prat A (2013) How do immune cells support and shape the brain in health, disease, and aging? J Neurosci 33(45):17587–17596. https://doi.org/10.1523/JNEUROSCI.3241-13.2013
Schwarzinger M, Pollock BG, Hasan OSM, Dufouil C, Rehm J (2018) Contribution of alcohol use disorders to the burden of dementia in France 2008–13: a nationwide retrospective cohort study. Lancet Public Health. 3(3):e124–e132. https://doi.org/10.1016/S2468-2667(18)30022-7
Silva-Gotay A, Davis J, Tavares ER, Richardson HN (2021) Alcohol drinking during early adolescence activates microglial cells and increases frontolimbic Interleukin-1 beta and Toll-like receptor 4 gene expression, with heightened sensitivity in male rats compared to females. Neuropharmacology 1(197):108698. https://doi.org/10.1016/j.neuropharm.2021.108698
Stilling RM, Dinan TG, Cryan JF (2014) Microbial genes, brain & behaviour—epigenetic regulation of the gut–brain axis. Genes Brain Behav 13(1):69–86. https://doi.org/10.1111/gbb.12109
Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(Pt 1):263–275. https://doi.org/10.1113/jphysiol.2004.063388
Tajuddin NF, Przybycien-Szymanska MM, Pak TR, Neafsey EJ, Collins MA (2013) Effect of repetitive daily ethanol intoxication on adult rat brain: significant changes in phospholipase A2 enzyme levels in association with increased PARP-1 indicate neuroinflammatory pathway activation. Alcohol 47(1):39–45. https://doi.org/10.1016/j.alcohol.2012.09.003
Tajuddin N, Moon KH, Marshall SA, Nixon K, Neafsey EJ, Kim HY, Collins MA (2014) Neuroinflammation and neurodegeneration in adult rat brain from binge ethanol exposure: abrogation by docosahexaenoic acid. PLoS ONE 9(7):e101223. https://doi.org/10.1371/journal.pone.0101223
Tang Y, Zhang L, Forsyth CB, Shaikh M, Song S, Keshavarzian A (2015) The role of miR-212 and iNOS in alcohol-induced intestinal barrier dysfunction and steatohepatitis. Alcohol Clin Exp Res 39(9):1632–1641. https://doi.org/10.1111/acer.12813
Tateno M, Saito T (2008) Biological studies on alcohol-induced neuronal damage. Psychiatry Investig 5(1):21–27. https://doi.org/10.4306/pi.2008.5.1.21
Tiwari V, Chopra K (2012) Attenuation of oxidative stress, neuroinflammation, and apoptosis by curcumin prevents cognitive deficits in rats postnatally exposed to ethanol. Psychopharmacology 224(4):519–535. https://doi.org/10.1007/s00213-012-2779-9
Toda T, Parylak SL, Linker SB, Gage FH (2019) The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 24(1):67–87. https://doi.org/10.1038/s41380-018-0036-2
Toosi A, Shajiee H, Khaksari M, Vaezi G, Hojati V (2019) Obestatin improve spatial memory impairment in a rat model of fetal alcohol spectrum disorders via inhibiting apoptosis and neuroinflammation. Neuropeptides 74:88–94. https://doi.org/10.1016/j.npep.2019.01.001
Ureña-Peralta JR, Alfonso-Loeches S, Cuesta-Diaz CM, García-García F, Guerri C (2018) Deep sequencing and miRNA profiles in alcohol-induced neuroinflammation and the TLR4 response in mice cerebral cortex. Sci Rep 8(1):15913. https://doi.org/10.1038/s41598-018-34277-y
Venkataraman A, Kalk N, Sewell G, Ritchie CW, Lingford-Hughes A (2017) Alcohol and Alzheimer’s disease-does alcohol dependence contribute to beta-amyloid deposition, neuroinflammation and neurodegeneration in Alzheimer’s disease? Alcohol Alcohol 52(2):151–158. https://doi.org/10.1093/alcalc/agw092
Villavicencio-Tejo F, Flores-Bastías O, Marambio-Ruiz L, Pérez-Reytor D, Karahanian E (2021) Fenofibrate (a PPAR-α Agonist) administered during ethanol withdrawal reverts ethanol-induced astrogliosis and restores the levels of glutamate transporter in ethanol-administered adolescent rats. Front Pharmacol 20(12):653175. https://doi.org/10.3389/fphar.2021.653175
Wang X, Fu S, Wang Y, Yu P, Hu J, Gu W, Xu XM, Lu P (2007) Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol Cell Neurosci 36(3):343–354. https://doi.org/10.1016/j.mcn.2007.07.005
Wang X, Hu D, Zhang L, Lian G, Zhao S, Wang C, Yin J, Wu C, Yang J (2014) Gomisin A inhibits lipopolysaccharide-induced inflammatory responses in N9 microglia via blocking the NF-κB/MAPKs pathway. Food Chem Toxicol 63:119–127. https://doi.org/10.1016/j.fct.2013.10.048
Wang X, Zhang K, Yang F, Ren Z, Xu M, Frank JA, Ke ZJ, Luo J (2018) Minocycline protects developing brain against ethanol-induced damage. Neuropharmacology 129:84–99. https://doi.org/10.1016/j.neuropharm.2017.11.019
Wang X, Yu H, Wang C, Liu Y, You J, Wang P, Xu G, Shen H, Yao H, Lan X, Zhao R, Wu X, Zhang G (2020) Chronic ethanol exposure induces neuroinflammation in H4 cells through TLR3/NF-κB pathway and anxiety-like behavior in male C57BL/6 mice. Toxicology 15(446):152625. https://doi.org/10.1016/j.tox.2020.152625
Ward RJ, Lallemand F, de Witte P (2009) Biochemical and neurotransmitter changes implicated in alcohol-induced brain damage in chronic or “binge drinking” alcohol abuse. Alcohol Alcohol 44(2):128–135. https://doi.org/10.1093/alcalc/agn100
Weisskopf MG, O’Reilly E, Chen H, Schwarzschild MA, Ascherio A (2007) Plasma urate and risk of Parkinson’s disease. Am J Epidemiol 166(5):561–567. https://doi.org/10.1093/aje/kwm127
Weisz VI, Argibay PF (2009) A putative role for neurogenesis in neuro-computational terms: inferences from a hippocampal model. Cognition 112(2):229–240. https://doi.org/10.1016/j.cognition.2009.05.001
Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC (2009) Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 108(6):1343–1359. https://doi.org/10.1111/j.1471-4159.2009.05886.x
Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B (2006) Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci 20(7):64. https://doi.org/10.1186/1471-2202-7-64
Wolf SA, Steiner B, Wengner A, Lipp M, Kammertoens T, Kempermann G (2009) Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus. FASEB J 23(9):3121–3128. https://doi.org/10.1096/fj.08-113944
World Health Organization (2019) Global status report on alcohol and health 2018. World Health Organization, Geneva
Wu B, Song B, Tian S, Huo S, Cui C, Guo Y, Liu H (2012) Central nervous system damage due to acute paraquat poisoning: a neuroimaging study with 3.0 T MRI. Neurotoxicology 33(5):1330–1337. https://doi.org/10.1016/j.neuro.2012.08.007
Yang G, Meng Y, Li W, Yong Y, Fan Z, Ding H, Wei Y, Luo J, Ke ZJ (2011) Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 21(3):279–297. https://doi.org/10.1111/j.1750-3639.2010.00445.x
Yook JS, Okamoto M, Rakwal R, Shibato J, Lee MC, Matsui T, Chang H, Cho JY, Soya H (2016) Astaxanthin supplementation enhances adult hippocampal neurogenesis and spatial memory in mice. Mol Nutr Food Res 60(3):589–599. https://doi.org/10.1002/mnfr.201500634
Yun JA, Jeong KS, Ahn YS, Han Y, Choi KS (2021) The interaction of inflammatory markers and alcohol-use on cognitive function in Korean male firefighters. Psychiatry Investig 18(3):205–213. https://doi.org/10.30773/pi.2020.0101
Yune TY, Lee JY, Cui CM, Kim HC, Oh TH (2009) Neuroprotective effect of Scutellaria baicalensis on spinal cord injury in rats. J Neurochem 110(4):1276–1287. https://doi.org/10.1111/j.1471-4159.2009.06214.x
Zhang K, Luo J (2019) Role of MCP-1 and CCR2 in alcohol neurotoxicity. Pharmacol Res 139:360–366. https://doi.org/10.1016/j.phrs.2018.11.030
Zhao X, Moore DL (2018) Neural stem cells: developmental mechanisms and disease modeling. Cell Tissue Res 371(1):1–6. https://doi.org/10.1007/s00441-017-2738-1
Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. https://doi.org/10.1016/j.cell.2008.01.033
Zhao YN, Wang F, Fan YX, Ping GF, Yang JY, Wu CF (2013) Activated microglia are implicated in cognitive deficits, neuronal death, and successful recovery following intermittent ethanol exposure. Behav Brain Res 236(1):270–282. https://doi.org/10.1016/j.bbr.2012.08.052
Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9(2):268–275. https://doi.org/10.1038/nn1629
Zou X, Durazzo TC, Meyerhoff DJ (2018) Regional brain volume changes in alcohol-dependent individuals during short-term and long-term abstinence. Alcohol Clin Exp Res 42(6):1062–1072. https://doi.org/10.1111/acer.13757
Acknowledgements
ACM acknowledges the financial supports from DBT (Grant No. BT/PR32907/MED/122/227/2019), DBT-BUILDER (Level-III) and DST-FIST-II to School of Life Sciences, Jawaharlal Nehru University, New Delhi, India. SKA acknowledges the financial support from CSIR-HRDG, (Grant No. 09/263(1101)/2016-EMR-I) New Delhi. MHA acknowledges the financial support from ICMR-SRF (Grant No. 45/7/2019/MP/BMS) New Delhi.
Funding
Funding from DBT (BT/PR32907/MED/122/227/2019), CSIR-HRDG, (09/263(1101)/2016-EMR-I) and ICMR-SRF (45/7/2019/MP/BMS).
Author information
Authors and Affiliations
Contributions
Conceptualization: SKA, MHA, MRS, RS, ACM; Writing-Original draft preparation: SKA, MHA, MRS, RS; Writing-Review and editing: SKA, MHA, MRS, RS, ACM; Supervision: ACM.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interest.
Ethics Approval and Consent to Participate
No ethical approval is required as no data were generated and used in the review.
Consent for Publication
All the authors have consent for publication.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Anand, S.K., Ahmad, M.H., Sahu, M.R. et al. Detrimental Effects of Alcohol-Induced Inflammation on Brain Health: From Neurogenesis to Neurodegeneration. Cell Mol Neurobiol 43, 1885–1904 (2023). https://doi.org/10.1007/s10571-022-01308-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10571-022-01308-2