Oxytocin Prevents the Development of 3-NP-Induced Anxiety and Depression in Male and Female Rats: Possible Interaction of OXTR and mGluR2

Abstract

Huntington disease (HD) is a progressive neurological disorder with dominant motor symptoms. It also has psychiatric manifestations, like anxiety and depression, that can emerge themselves before motor symptoms and impose a major burden on patients. Oxytocin (OXT) is a newly emerged treatment for disorders like autism and schizophrenia and recently is using to alleviate depression and anxiety. In the current study, we investigated the behavioral and molecular effects of OXT on the development of anxiety and depression in 3-nitropropionic acid (3-NP)-induced model of HD. Anxiety- and depression-like behaviors as well as the levels of oxytocin receptor (OXTR), metabotropic glutamate receptor (mGluR) 2, mGluR5, and glutathione (GSH) were measured in striatum, hippocampus, prefrontal cortex, and amygdala. Also, we questioned if sex had any modulatory effect. We found that 3-NP increased anxiety and depression compared to controls. It also reduced the levels of OXTR and mGluR2, increased mGluR5, and reduced GSH in studied brain regions. Pretreatment with OXT before the injection of 3-NP ameliorated anxiety and depression. Additionally, it protected the brain from developing low levels of OXTR, mGluR2, and GSH and high levels of mGluR5 in studied regions. The protective effects of OXT were similar between male and female animals. These data suggest that OXTR, mGluR2, mGluR5, and GSH may contribute to psychiatric manifestations of HD. In addition, pretreatment with OXT could prevent the mood changes in male and female rats.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

If required, data are available.

Code Availability

Not applicable.

References

  1. Abd-Elrahman KS, Hamilton A, Hutchinson SR, Liu F, Russell RC, Ferguson SSG (2017) mGluR5 antagonism increases autophagy and prevents disease progression in the zQ175 mouse model of huntington’s disease. Sci Signal. https://doi.org/10.1126/scisignal.aan6387

    Article  PubMed  Google Scholar 

  2. Alizadeh AM, Faghihi M, Khori V, Sohanaki H, Pourkhalili K, Mohammadghasemi F, Mohsenikia M (2012) Oxytocin protects cardiomyocytes from apoptosis induced by ischemia-reperfusion in rat heart: role of mitochondrial ATP-dependent potassium channel and permeability transition pore. Peptides 36:71–77. https://doi.org/10.1016/j.peptides.2012.03.023

    CAS  Article  PubMed  Google Scholar 

  3. Ansseau M et al (1987) Intranasal oxytocin in obsessive-compulsive disorder. Psychoneuroendocrinology 12:231–236

    CAS  Article  Google Scholar 

  4. Arletti R, Bertolini A (1987) Oxytocin acts as an antidepressant in two animal models of depression. Life Sci 41:1725–1730. https://doi.org/10.1016/0024-3205(87)90600-x

    CAS  Article  PubMed  Google Scholar 

  5. Ayala-Pena S (2013) Role of oxidative DNA damage in mitochondrial dysfunction and huntington’s disease pathogenesis. Free Radic Biol Med 62:102–110. https://doi.org/10.1016/j.freeradbiomed.2013.04.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25:335–358. https://doi.org/10.1016/s0165-0173(97)00045-3

    CAS  Article  PubMed  Google Scholar 

  7. Beal MF et al (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192

    CAS  Article  Google Scholar 

  8. Bernheim A, Leong KC, Berini C, Reichel CM (2017) Antagonism of mGlu2/3 receptors in the nucleus accumbens prevents oxytocin from reducing cued methamphetamine seeking in male and female rats. Pharmacol Biochem Behav 161:13–21. https://doi.org/10.1016/j.pbb.2017.08.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bertero E, Maack C (2018) Calcium signaling and reactive oxygen species in mitochondria. Circ Res 122:1460–1478. https://doi.org/10.1161/CIRCRESAHA.118.310082

    CAS  Article  PubMed  Google Scholar 

  10. Brady AE, Conn PJ (2008) Metabotropic glutamate receptor ligands as novel therapeutic agents. In: The Glutamate Receptors. Springer, pp. 529–564

  11. Brouillet E (2014) The 3‐NP model of striatal neurodegeneration. Current Protocols in Neuroscience. 67:9.48. 41–49.48. 14

  12. Caldwell H, Stephens S, Young rW (2009) Oxytocin as a natural antipsychotic: a study using oxytocin knockout mice. Mol Psychiatry 14:190–196

    CAS  Article  Google Scholar 

  13. Cepeda C et al (2001) NMDA receptor function in mouse models of huntington disease. J Neurosci Res 66:525–539. https://doi.org/10.1002/jnr.1244

    CAS  Article  PubMed  Google Scholar 

  14. Cha MY, Kim DK, Mook-Jung I (2015) The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp Mol Med 47:e150. https://doi.org/10.1038/emm.2014.122

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Chaki S, Ago Y, Palucha-Paniewiera A, Matrisciano F, Pilc A (2013) mGlu2/3 and mGlu5 receptors: potential targets for novel antidepressants. Neuropharmacology 66:40–52

    CAS  Article  Google Scholar 

  16. Chakraborty J, Singh R, Dutta D, Naskar A, Rajamma U, Mohanakumar KP (2014) Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of huntington’s disease. CNS Neurosci Ther 20:10–19. https://doi.org/10.1111/cns.12189

    CAS  Article  PubMed  Google Scholar 

  17. Charney DS, Deutch A (1996) A functional neuroanatomy of anxiety and fear: implications for the pathophysiology and treatment of anxiety disorders. Crit Rev Neurobiol 10:419–446. https://doi.org/10.1615/critrevneurobiol.v10.i3-4.70

    CAS  Article  PubMed  Google Scholar 

  18. Chaturvedi RK, Beal MF (2013) Mitochondria targeted therapeutic approaches in parkinson’s and huntington’s diseases. Mol Cell Neurosci 55:101–114. https://doi.org/10.1016/j.mcn.2012.11.011

    CAS  Article  PubMed  Google Scholar 

  19. Cheong RY, Tonetto S, von Horsten S, Petersen A (2020) Imbalance of the oxytocin-vasopressin system contributes to the neuropsychiatric phenotype in the BACHD mouse model of Huntington disease. Psychoneuroendocrinology 119:104773. https://doi.org/10.1016/j.psyneuen.2020.104773

    CAS  Article  PubMed  Google Scholar 

  20. Colle D, Hartwig JM, Soares FA, Farina M (2012) Probucol modulates oxidative stress and excitotoxicity in huntington’s disease models in vitro. Brain Res Bull 87:397–405. https://doi.org/10.1016/j.brainresbull.2012.01.003

    CAS  Article  PubMed  Google Scholar 

  21. Conn PJ, Pin J-P (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    CAS  Article  Google Scholar 

  22. Craufurd D, Thompson JC, Snowden JS (2001) Behavioral changes in huntington disease. Cogn Behav Neurol 14:219–226

    CAS  Google Scholar 

  23. Curras-Collazo MC, Gillard ER, Jin J, Pandika J (2003) Vasopressin and oxytocin decrease excitatory amino acid release in adult rat supraoptic nucleus. J Neuroendocrinol 15:182–190. https://doi.org/10.1046/j.1365-2826.2003.00976.x

    CAS  Article  PubMed  Google Scholar 

  24. Das B, Sarkar C (2012) Is preconditioning by oxytocin administration mediated by iNOS and/or mitochondrial K(ATP) channel activation in the in vivo anesthetized rabbit heart? Life Sci 90:763–769. https://doi.org/10.1016/j.lfs.2012.03.030

    CAS  Article  PubMed  Google Scholar 

  25. De Cagna F et al (2019) The role of intranasal oxytocin in anxiety and depressive disorders: a systematic review of randomized controlled trials. Clin Psychopharmacol Neurosci 17:1–11. https://doi.org/10.9758/cpn.2019.17.1.1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. De Dreu CK, Greer LL, Van Kleef GA, Shalvi S, Handgraaf MJ (2011) Oxytocin promotes human ethnocentrism. Proc Natl Acad Sci 108:1262–1266

    Article  Google Scholar 

  27. Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC (2007) Oxytocin improves “mind-reading” in humans. Biol Psychiatry 61:731–733

    CAS  Article  Google Scholar 

  28. Drevets WC (2000) Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 126:413–431. https://doi.org/10.1016/S0079-6123(00)26027-5

    CAS  Article  PubMed  Google Scholar 

  29. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118. https://doi.org/10.1007/s00429-008-0189-x

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    CAS  Article  Google Scholar 

  31. Dumais KM, Bredewold R, Mayer TE, Veenema AH (2013) Sex differences in oxytocin receptor binding in forebrain regions: correlations with social interest in brain region- and sex- specific ways. Horm Behav 64:693–701. https://doi.org/10.1016/j.yhbeh.2013.08.012

    CAS  Article  PubMed  Google Scholar 

  32. Dvorzhak A, Grantyn R (2020) Single synapse indicators of glutamate release and uptake in acute brain slices from normal and huntington mice. J Vis Exp. https://doi.org/10.3791/60113

    Article  PubMed  Google Scholar 

  33. Ellman G (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    CAS  Article  Google Scholar 

  34. Engin E, Treit D (2007) The role of hippocampus in anxiety: intracerebral infusion studies. Behav Pharmacol 18:365–374. https://doi.org/10.1097/FBP.0b013e3282de7929

    CAS  Article  PubMed  Google Scholar 

  35. Gabery S, Halliday G, Kirik D, Englund E, Petersén Å (2015) Selective loss of oxytocin and vasopressin in the hypothalamus in early huntington disease: a case study. Neuropathol Appl Neurobiol 41:843–848

    Article  Google Scholar 

  36. Gabery S et al (2010) Changes in key hypothalamic neuropeptide populations in huntington disease revealed by neuropathological analyses. Acta Neuropathol 120:777–788

    CAS  Article  Google Scholar 

  37. Gołyszny M, Obuchowicz E (2019) Are neuropeptides relevant for the mechanism of action of SSRIs? Neuropeptides 75:1–17

    Article  Google Scholar 

  38. Gravina FS, Jobling P, Kerr KP, de Oliveira RB, Parkington HC, van Helden DF (2011) Oxytocin depolarizes mitochondria in isolated myometrial cells. Exp Physiol 96:949–956. https://doi.org/10.1113/expphysiol.2011.058388

    CAS  Article  PubMed  Google Scholar 

  39. Griffiths EJ, Rutter GA (2009) Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta 1787:1324–1333. https://doi.org/10.1016/j.bbabio.2009.01.019

    CAS  Article  PubMed  Google Scholar 

  40. Hamilton BF, Gould DH (1987) Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage. Acta Neuropathol 72:286–297. https://doi.org/10.1007/BF00691103

    CAS  Article  PubMed  Google Scholar 

  41. Hamilton JM et al (2003) Behavioural abnormalities contribute to functional decline in huntington’s disease. J Neurol Neurosurg Psychiatry 74:120–122. https://doi.org/10.1136/jnnp.74.1.120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Han RT et al (2018) Long-term isolation elicits depression and anxiety-related behaviors by reducing oxytocin-induced GABAergic transmission in central amygdala. Front Mol Neurosci 11:246. https://doi.org/10.3389/fnmol.2018.00246

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Haussler HU, Jirikowski GF, Caldwell JD (1990) Sex differences among oxytocin-immunoreactive neuronal systems in the mouse hypothalamus. J Chem Neuroanat 3:271–276

    CAS  PubMed  Google Scholar 

  44. Hult Lundh S, Nilsson N, Soylu R, Kirik D, Petersen A (2013) Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of huntington’s disease. Hum Mol Genet 22:3485–3497. https://doi.org/10.1093/hmg/ddt203

    CAS  Article  PubMed  Google Scholar 

  45. Hult S et al (2011) Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab 13:428–439. https://doi.org/10.1016/j.cmet.2011.02.013

    CAS  Article  PubMed  Google Scholar 

  46. Jain D, Gangshettiwar A (2014) Combination of lycopene, quercetin and poloxamer 188 alleviates anxiety and depression in 3-nitropropionic acid-induced huntington’s disease in rats. J Intercult Ethnopharmacol 3:186–191. https://doi.org/10.5455/jice.20140903012921

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kimmel M et al (2016) Oxytocin receptor DNA methylation in postpartum depression. Psychoneuroendocrinology 69:150–160. https://doi.org/10.1016/j.psyneuen.2016.04.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Kombian SB, Hirasawa M, Mouginot D, Pittman QJ (2002) Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus. Prog Brain Res 139:235–246. https://doi.org/10.1016/s0079-6123(02)39020-4

    CAS  Article  PubMed  Google Scholar 

  49. Kotliarova S et al (2005) Decreased expression of hypothalamic neuropeptides in huntington disease transgenic mice with expanded polyglutamine-EGFP fluorescent aggregates. J Neurochem 93:641–653

    CAS  Article  Google Scholar 

  50. Kufahl PR et al (2013) Attenuation of methamphetamine seeking by the mGluR2/3 agonist LY379268 in rats with histories of restricted and escalated self-administration. Neuropharmacology 66:290–301. https://doi.org/10.1016/j.neuropharm.2012.05.037

    CAS  Article  PubMed  Google Scholar 

  51. La Fontaine MA, Geddes JW, Banks A, Butterfield DA (2000) 3-nitropropionic acid induced in vivo protein oxidation in striatal and cortical synaptosomes: insights into huntington’s disease. Brain Res 858:356–362. https://doi.org/10.1016/s0006-8993(00)01948-x

    Article  PubMed  Google Scholar 

  52. Labuschagne I, Poudel G, Kordsachia C, Wu Q, Thomson H, Georgiou-Karistianis N, Stout JC (2018) Oxytocin selectively modulates brain processing of disgust in huntington’s disease gene carriers. Prog Neuropsychopharmacol Biol Psychiatry 81:11–16. https://doi.org/10.1016/j.pnpbp.2017.09.023

    CAS  Article  PubMed  Google Scholar 

  53. Le Dorze C, Borreca A, Pignataro A, Ammassari-Teule M, Gisquet-Verrier P (2020) Emotional remodeling with oxytocin durably rescues trauma-induced behavioral and neuro-morphological changes in rats: a promising treatment for PTSD Transl. Psychiatry 10:27. https://doi.org/10.1038/s41398-020-0714-0

    CAS  Article  Google Scholar 

  54. Lea PMt, Movsesyan VA, Faden AI (2005) Neuroprotective activity of the mGluR5 antagonists MPEP and MTEP against acute excitotoxicity differs and does not reflect actions at mGluR5 receptors. Br J Pharmacol 145:527–534. https://doi.org/10.1038/sj.bjp.0706219

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Lee HJ, Macbeth AH, Pagani JH, Youngrd WS (2009) Oxytocin: the great facilitator of life. Prog Neurobiol 88:127–151

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lim LW et al (2008) Effect of buspirone on the behavioral regulation of rats in low versus high anxiety conditions. Arzneimittelforschung 58:269–276. https://doi.org/10.1055/s-0031-1296506

    CAS  Article  PubMed  Google Scholar 

  57. Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E (2009) Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ 16:899–909. https://doi.org/10.1038/cdd.2009.22

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Lu WY, Xiong ZG, Lei S, Orser BA, Dudek E, Browning MD, MacDonald JF (1999) G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci 2:331–338. https://doi.org/10.1038/7243

    CAS  Article  PubMed  Google Scholar 

  59. Ma X et al (2018) Sex- and context-dependent effects of oxytocin on social sharing. Neuroimage 183:62–72. https://doi.org/10.1016/j.neuroimage.2018.08.004

    CAS  Article  PubMed  Google Scholar 

  60. Maiuri T, Suart CE, Hung CLK, Graham KJ, Barba Bazan CA, Truant R (2019) DNA damage repair in huntington’s disease and other neurodegenerative diseases. Neurotherapeutics 16:948–956. https://doi.org/10.1007/s13311-019-00768-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Maud C, Ryan J, McIntosh JE, Olsson CA (2018) The role of oxytocin receptor gene (OXTR) DNA methylation (DNAm) in human social and emotional functioning: a systematic narrative review. BMC Psychiatry 18:154. https://doi.org/10.1186/s12888-018-1740-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Moslemi M, Khodagholi F, Asadi S, Rafiei S, Motamedi F (2020) Oxytocin protects against 3-NP induced learning and memory impairment in rats: sex differences in behavioral and molecular responses to the context of prenatal stress. Behav Brain Res 379:112354. https://doi.org/10.1016/j.bbr.2019.112354

    CAS  Article  PubMed  Google Scholar 

  63. Ohishi H, Neki A, Mizuno N (1998) Distribution of a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat and mouse: an immunohistochemical study with a monoclonal antibody. Neurosci Res 30:65–82

    CAS  Article  Google Scholar 

  64. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N (1993a) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 53:1009–1018

    CAS  Article  Google Scholar 

  65. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N (1993b) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J Comp Neurol 335:252–266

    CAS  Article  Google Scholar 

  66. Paggio A et al (2019) Identification of an ATP-sensitive potassium channel in mitochondria. Nature 572:609–613. https://doi.org/10.1038/s41586-019-1498-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Palucha A, Pilc A (2007) Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol Ther 115:116–147

    CAS  Article  Google Scholar 

  68. Pandey M, Mohanakumar KP, Usha R (2010) Mitochondrial functional alterations in relation to pathophysiology of huntington’s disease. J Bioenerg Biomembr 42:217–226. https://doi.org/10.1007/s10863-010-9288-5

    CAS  Article  PubMed  Google Scholar 

  69. Paoli RA et al (2017) Neuropsychiatric burden in huntington’s disease. Brain Sci. https://doi.org/10.3390/brainsci7060067

    Article  PubMed  PubMed Central  Google Scholar 

  70. Paul BD, Snyder SH (2019) Impaired redox signaling in huntington’s disease: therapeutic implications. Front Mol Neurosci 12:68. https://doi.org/10.3389/fnmol.2019.00068

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    CAS  Article  Google Scholar 

  72. Peris J, MacFadyen K, Smith JA, de Kloet AD, Wang L, Krause EG (2017) Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol 525:1094–1108. https://doi.org/10.1002/cne.24116

    CAS  Article  PubMed  Google Scholar 

  73. Petersen A, Gabery S (2012) Hypothalamic and limbic system changes in huntington’s disease. J Huntingtons Dis 1:5–16. https://doi.org/10.3233/JHD-2012-120006

    Article  PubMed  Google Scholar 

  74. Pilc A, Chaki S, Nowak G, Witkin JM (2008) Mood disorders: regulation by metabotropic glutamate receptors. Biochem Pharmacol 75:997–1006

    CAS  Article  Google Scholar 

  75. Pohl F, Kong Thoo Lin P (2018) The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases vitro, in vivo and clinical trials. Molecules. https://doi.org/10.3390/molecules23123283

    Article  PubMed  PubMed Central  Google Scholar 

  76. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    CAS  Article  Google Scholar 

  77. Potashkin JA, Meredith GE (2006) The role of oxidative stress in the dysregulation of gene expression and protein metabolism in neurodegenerative disease. Antioxid Redox Signal 8:144–151. https://doi.org/10.1089/ars.2006.8.144

    CAS  Article  PubMed  Google Scholar 

  78. Ribeiro FM, Pires RG, Ferguson SS (2011) Huntington’s disease and Group I metabotropic glutamate receptors. Mol Neurobiol 43:1–11. https://doi.org/10.1007/s12035-010-8153-1

    CAS  Article  PubMed  Google Scholar 

  79. Ribeiro FM, Vieira LB, Pires RG, Olmo RP, Ferguson SS (2017) Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 115:179–191. https://doi.org/10.1016/j.phrs.2016.11.013

    CAS  Article  PubMed  Google Scholar 

  80. Roos RA (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40. https://doi.org/10.1186/1750-1172-5-40

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sabihi S, Dong SM, Maurer SD, Post C, Leuner B (2017) Oxytocin in the medial prefrontal cortex attenuates anxiety: anatomical and receptor specificity and mechanism of action. Neuropharmacology 125:1–12. https://doi.org/10.1016/j.neuropharm.2017.06.024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Sabihi S, Durosko NE, Dong SM, Leuner B (2014) Oxytocin in the prelimbic medial prefrontal cortex reduces anxiety-like behavior in female and male rats. Psychoneuroendocrinology 45:31–42. https://doi.org/10.1016/j.psyneuen.2014.03.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Sandhir R, Sood A, Mehrotra A, Kamboj SS (2012) N-Acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced huntington’s disease. Neurodegener Dis 9:145–157. https://doi.org/10.1159/000334273

    CAS  Article  PubMed  Google Scholar 

  84. Schiefer J et al (2004) The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of huntington’s disease. Brain Res 1019:246–254. https://doi.org/10.1016/j.brainres.2004.06.005

    CAS  Article  PubMed  Google Scholar 

  85. Schmidt W, Schmidt WJ, Reith ME (2005) Dopamine and glutamate in psychiatric disorders. Humana Press, Totowa

    Google Scholar 

  86. Sepers MD, Raymond LA (2014) Mechanisms of synaptic dysfunction and excitotoxicity in huntington’s disease. Drug Discov Today 19:990–996. https://doi.org/10.1016/j.drudis.2014.02.006

    CAS  Article  PubMed  Google Scholar 

  87. Sharma SR, Gonda X, Dome P, Tarazi FI (2020) What’s love got to do with it: role of oxytocin in trauma, attachment and resilience. Pharmacol Ther 214:107602. https://doi.org/10.1016/j.pharmthera.2020.107602

    CAS  Article  PubMed  Google Scholar 

  88. Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, Reddy PH (2011) Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 20:1438–1455. https://doi.org/10.1093/hmg/ddr024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Siddiqui A et al (2012) Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in huntington’s disease. Free Radic Biol Med 53:1478–1488. https://doi.org/10.1016/j.freeradbiomed.2012.06.008

    CAS  Article  PubMed  Google Scholar 

  90. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. https://doi.org/10.3390/molecules24081583

    Article  PubMed  PubMed Central  Google Scholar 

  91. Song Z, Albers HE (2018) Cross-talk among oxytocin and arginine-vasopressin receptors: relevance for basic and clinical studies of the brain and periphery. Front Neuroendocrinol 51:14–24. https://doi.org/10.1016/j.yfrne.2017.10.004

    CAS  Article  PubMed  Google Scholar 

  92. Souza LC, Wilhelm EA, Bortolatto CF, Nogueira CW, Boeira SP, Jesse CR (2014) Involvement of mGlu5 receptor in 3-nitropropionic acid-induced oxidative stress in rat striatum. Neurol Res 36:833–840. https://doi.org/10.1179/1743132814Y.0000000334

    CAS  Article  PubMed  Google Scholar 

  93. Spooren W, Ballard T, Gasparini F, Amalric M, Mutel V, Schreiber R (2003) Insight into the function of group I and group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications for the treatment of CNS disorders. Behav Pharmacol 14:257–277

    CAS  Article  Google Scholar 

  94. Spooren W, Gasparini F (2004) mGlu5 receptor antagonists: a novel class of anxiolytics? Drug News Perspect 17:251

    CAS  Article  Google Scholar 

  95. Starling AJ, Andre VM, Cepeda C, de Lima M, Chandler SH, Levine MS (2005) Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of huntington’s disease. J Neurosci Res 82:377–386. https://doi.org/10.1002/jnr.20651

    CAS  Article  PubMed  Google Scholar 

  96. Tariq M, Khan HA, Elfaki I, Al Deeb S, Al Moutaery K (2005) Neuroprotective effect of nicotine against 3-nitropropionic acid (3-NP)-induced experimental huntington’s disease in rats. Brain Res Bull 67:161–168

    CAS  Article  Google Scholar 

  97. Torabi A et al (2020) The effect of 3-nitropropionic acid on behavioral dysfunction, neuron loss and gliosis in the brain of adult male rats: the case of prefrontal cortex, hippocampus and the cerebellum. Toxicon 183:44–50. https://doi.org/10.1016/j.toxicon.2020.05.012

    CAS  Article  PubMed  Google Scholar 

  98. Tozzi A et al (2007) Memantine reduces neuronal dysfunctions triggered by in vitro ischemia and 3-nitropropionic acid. Exp Neurol 207:218–226. https://doi.org/10.1016/j.expneurol.2007.06.008

    CAS  Article  PubMed  Google Scholar 

  99. Tribollet E, Audigier S, Dubois-Dauphin M, Dreifuss JJ (1990) Gonadal steroids regulate oxytocin receptors but not vasopressin receptors in the brain of male and female rats. An autoradiographical study Brain Res 511:129–140. https://doi.org/10.1016/0006-8993(90)90232-z

    CAS  Article  PubMed  Google Scholar 

  100. Túnez I, Tasset I, Santamaría A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in huntington’s disease: past, present and future. Molecules 15:878–916

    Article  Google Scholar 

  101. Unti E et al (2018) Social cognition and oxytocin in huntington’s disease: new insights. Brain Sci. https://doi.org/10.3390/brainsci8090161

    Article  PubMed  PubMed Central  Google Scholar 

  102. Uvnas-Moberg K, Ahlenius S, Hillegaart V, Alster P (1994) High doses of oxytocin cause sedation and low doses cause an anxiolytic-like effect in male rats. Pharmacol Biochem Behav 49:101–106. https://doi.org/10.1016/0091-3057(94)90462-6

    CAS  Article  PubMed  Google Scholar 

  103. Varty GB et al (2005) The antinociceptive and anxiolytic-like effects of the metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and MTEP, and the mGluR1 antagonist, LY456236, in rodents: a comparison of efficacy and side-effect profiles. Psychopharmacology 179:207–217

    CAS  Article  Google Scholar 

  104. Volbracht C, van Beek J, Zhu C, Blomgren K, Leist M (2006) Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity. Eur J Neurosci 23:2611–2622. https://doi.org/10.1111/j.1460-9568.2006.04787.x

    Article  PubMed  Google Scholar 

  105. Wang Y, Zhao S, Liu X, Zheng Y, Li L, Meng S (2018) Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomed Pharmacother 107:262–269. https://doi.org/10.1016/j.biopha.2018.07.148

    CAS  Article  PubMed  Google Scholar 

  106. Wheelock VL et al (2003) Predictors of nursing home placement in huntington disease. Neurology 60:998–1001. https://doi.org/10.1212/01.wnl.0000052992.58107.67

    CAS  Article  PubMed  Google Scholar 

  107. Williams AV, Trainor BC (2018) The impact of sex as a biological variable in the search for novel antidepressants. Front Neuroendocrinol 50:107–117. https://doi.org/10.1016/j.yfrne.2018.05.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Wright DJ et al (2016) N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in huntington’s disease. Hum Mol Genet 25:2923–2933. https://doi.org/10.1093/hmg/ddw144

    CAS  Article  PubMed  Google Scholar 

  109. Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Furukawa Y, Yamada M, Nukina N (2010) Mutant huntingtin fragment selectively suppresses Brn-2 POU domain transcription factor to mediate hypothalamic cell dysfunction. Hum Mol Genet 19:2099–2112. https://doi.org/10.1093/hmg/ddq087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Yang JL, Weissman L, Bohr VA, Mattson MP (2008) Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst) 7:1110–1120. https://doi.org/10.1016/j.dnarep.2008.03.012

    CAS  Article  Google Scholar 

  111. Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young LJ, Onaka T, Nishimori K (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29:2259–2271. https://doi.org/10.1523/JNEUROSCI.5593-08.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Zak PJ, Stanton AA, Ahmadi S (2007) Oxytocin increases generosity in humans. PLoS ONE 2:e1128

    Article  Google Scholar 

  113. Zeef DH et al (2012) Motor and non-motor behaviour in experimental huntington’s disease. Behav Brain Res 226:435–439. https://doi.org/10.1016/j.bbr.2011.09.041

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Shahid Beheshti University of Medical Sciences Research Funds (Grant No.15693-1).

Funding

This work was supported by Shahid Beheshti University of Medical Sciences Research Funds (Grant No.15693-1).

Author information

Affiliations

Authors

Contributions

[Fariba Khodagholi], [Ali Maleki], [Fereshteh Motamedi], and [Mehdi Moslemi] participated in the study design.[Shahrbanoo Rafiei] and [Mehdi Moslemi] contributed in data analysis.[Fariba Khodagholi], [Ali Maleki], [Maryamalsadat Mousavi], and [Mehdi Moslemi] contributed in data interpretation and writing the manuscript.[Fariba Khodagholi] and [Fereshteh Motamedi] contributed in editing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mehdi Moslemi.

Ethics declarations

Conflict of interest

The authors affirm that the research has no conflict of interest.

Ethics Approval

Experiments were conducted according the Care and Use of Laboratory Animals (NIH publication, 85-23, revised 1996) guidelines and approved by the Shahid Beheshti University of Medical Sciences Ethics Committee. Written ratification for the study was received from the Neuroscience Research Center Ethics Board (IR.SBMU.PHNS.REC.1397.016).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khodagholi, F., Maleki, A., Motamedi, F. et al. Oxytocin Prevents the Development of 3-NP-Induced Anxiety and Depression in Male and Female Rats: Possible Interaction of OXTR and mGluR2. Cell Mol Neurobiol (2020). https://doi.org/10.1007/s10571-020-01003-0

Download citation

Keywords

  • Oxytocin
  • 3-NP
  • Huntington disease
  • Depression
  • Anxiety