Skip to main content

Non-visual Opsins and Novel Photo-Detectors in the Vertebrate Inner Retina Mediate Light Responses Within the Blue Spectrum Region

Abstract

In recent decades, a number of novel non-visual opsin photopigments belonging to the family of G protein- coupled receptors, likely involved in a number of non-image-forming processes, have been identified and characterized in cells of the inner retina of vertebrates. It is now known that the vertebrate retina is composed of visual photoreceptor cones and rods responsible for diurnal/color and nocturnal/black and white vision, and cells like the intrinsically photosensitive retinal ganglion cells (ipRGCs) and photosensitive horizontal cells in the inner retina, both detecting blue light and expressing the photopigment melanopsin (Opn4). Remarkably, these non-visual photopigments can continue to operate even in the absence of vision under retinal degeneration. Moreover, inner retinal neurons and Müller glial cells have been shown to express other photopigments such as the photoisomerase retinal G protein-coupled receptor (RGR), encephalopsin (Opn3), and neuropsin (Opn5), all able to detect blue/violet light and implicated in chromophore recycling, retinal clock synchronization, neuron-to-glia communication, and other activities. The discovery of these new photopigments in the inner retina of vertebrates is strong evidence of novel light-regulated activities. This review focuses on the features, localization, photocascade, and putative functions of these novel non-visual opsins in an attempt to shed light on their role in the inner retina of vertebrates and in the physiology of the whole organism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahamed Basha A, Mathangi DC, Shyamala R, Ramesh Rao K (2014) Protective effect of light emitting diode phototherapy on fluorescent light induced retinal damage in Wistar strain albino rats. Ann Anat. https://doi.org/10.1016/j.aanat.2014.04.004

    Article  PubMed  Google Scholar 

  2. Álvarez-Viejo M, Cernuda-Cernuda R, DeGrip WJ et al (2003) Co-localization of mesotocin and opsin immunoreactivity in the hypothalamic preoptic nucleus of Xenopus laevis. Brain Res. https://doi.org/10.1016/S0006-8993(03)02273-X

    Article  PubMed  Google Scholar 

  3. Araki M, Kimura H (1991) GABA-like immunoreactivity in the developing chick retina: differentiation of GABAergic horizontal cell and its possible contacts with photoreceptors. J Neurocytol. https://doi.org/10.1007/BF01355531

    Article  PubMed  Google Scholar 

  4. Badea TC, Cahill H, Ecker J et al (2009) Distinct roles of transcription factors Brn3a and Brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron. https://doi.org/10.1016/j.neuron.2009.01.020

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bailey MJ, Beremand PD, Hammer R, Reidel E, Thomas TL, Cassone VM (2004) Transcriptional profiling of circadian patterns of mRNA expression in the chick retina. J Biol Chem 279:52247–52254. https://doi.org/10.1074/jbc.M405679200

    CAS  Article  PubMed  Google Scholar 

  6. Bailey MJ, Cassone VM (2004) Opsin photoisomerases in the chick retina and pineal gland: characterization, localization, and circadian regulation. Investig Ophthalmol Vis Sci 45:769–775. https://doi.org/10.1167/iovs.03-1125

    Article  Google Scholar 

  7. Bailey MJ, Cassone VM (2005) Melanopsin expression in the chick retina and pineal gland. Mol Brain Res. https://doi.org/10.1016/j.molbrainres.2004.11.003

    Article  PubMed  Google Scholar 

  8. Barnard AR, Hattar S, Hankins MW, Lucas RJ (2006) Melanopsin regulates visual processing in the mouse retina. Curr Biol. https://doi.org/10.1016/j.cub.2005.12.045

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bass J, Lazar MA (2016) Circadian time signatures of fitness and disease. Science 354:994–999. https://doi.org/10.1126/science.aah4965

    CAS  Article  PubMed  Google Scholar 

  10. Batten ML, Imanishi Y, Maeda T et al (2004) Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J Biol Chem. https://doi.org/10.1074/jbc.M312410200

    Article  PubMed  Google Scholar 

  11. Beaudry FEG, Iwanicki TW, Mariluz BRZ et al (2017) The non-visual opsins: eighteen in the ancestor of vertebrates, astonishing increase in ray-finned fish, and loss in amniotes. J Exp Zool Part B Mol Dev Evol. https://doi.org/10.1002/jez.b.22773

    Article  Google Scholar 

  12. Bellingham J, Chaurasia SS, Melyan Z et al (2006) Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol. https://doi.org/10.1371/journal.pbio.0040254

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bellingham J, Wells DJ, Foster RG (2003) In silico characterisation and chromosomal localisation of human RRH (peropsin) - Implications for opsin evolution. BMC Genomics. https://doi.org/10.1186/1471-2164-4-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Benedetto MM, Contin MA (2019) Oxidative stress in retinal degeneration promoted by constant LED light. Front Cell Neurosci. https://doi.org/10.3389/fncel.2019.00139

    Article  PubMed  PubMed Central  Google Scholar 

  15. Benedetto MM, Guido ME, Contin MA (2017) Non-visual photopigments effects of constant light-emitting diode light exposure on the inner retina of Wistar rats. Front Neurol. https://doi.org/10.3389/fneur.2017.00417

    Article  PubMed  PubMed Central  Google Scholar 

  16. Berson DM, Castrucci AM, Provencio I (2010) Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. J Comp Neurol. https://doi.org/10.1002/cne.22381

    Article  PubMed  PubMed Central  Google Scholar 

  17. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science. https://doi.org/10.1126/science.1067262

    Article  PubMed  PubMed Central  Google Scholar 

  18. Besharse JC, Iuvone PM (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305:133–135. https://doi.org/10.1038/305133a0

    CAS  Article  PubMed  Google Scholar 

  19. Blackshaw S, Snyder SH (1999) Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J Neurosci. https://doi.org/10.1523/jneurosci.19-10-03681.1999

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bono J, Clopath C (2019) Synaptic plasticity onto inhibitory neurons as a mechanism for ocular dominance plasticity. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1006834

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bowmaker JK, Heath LA, Wilkie SE, Hunt DM (1997) Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. https://doi.org/10.1016/S0042-6989(97)00026-6

    Article  PubMed  Google Scholar 

  22. Brancaccio M, Edwards MD, Patton AP et al (2019) Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363:187. https://doi.org/10.1126/science.aat4104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Brown TM, Gias C, Hatori M et al (2010) Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000558

    Article  PubMed  PubMed Central  Google Scholar 

  24. Buhr ED, Van Gelder RN (2014) Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1323350111

    Article  PubMed  Google Scholar 

  25. Buhr ED, Vemaraju S, Diaz N et al (2019) Neuropsin (OPN5) mediates local light-dependent induction of circadian clock genes and circadian photoentrainment in exposed murine skin. Curr Biol. https://doi.org/10.1016/j.cub.2019.08.063

    Article  PubMed  PubMed Central  Google Scholar 

  26. Buhr ED, Yue WWS, Ren X et al (2015) Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1516259112

    Article  PubMed  Google Scholar 

  27. Bobu C, Hicks D (2009) Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting. Investig Ophthalmol Vis Sci 50:3495–3502. https://doi.org/10.1167/iovs.08-3145

    Article  Google Scholar 

  28. Bobu C, Sandu C, Laurent V, Felder-Schmittbuhl MP, Hicks D (2013) Prolonged light exposure induces widespread phase shifting in the circadian clock and visual pigment gene expression of the Arvicanthis ansorgei retina. Mol Vis 19:1060–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cameron MA, Barnard AR, Lucas RJ (2008) The electroretinogram as a method for studying circadian rhythms in the mammalian retina. J Genet 87:459–466. https://doi.org/10.1007/s12041-008-0068-5

    Article  PubMed  Google Scholar 

  30. Castellano-Pellicena I, Uzunbajakava NE, Mignon C et al (2019) Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg Med. https://doi.org/10.1002/lsm.23015

    Article  PubMed  Google Scholar 

  31. Chaurasia SS, Rollag MD, Jiang G et al (2005) Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem. https://doi.org/10.1111/j.1471-4159.2004.02874.x

    Article  PubMed  Google Scholar 

  32. Chen P, Hao W, Rife L et al (2001) A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat Genet. https://doi.org/10.1038/90089

    Article  PubMed  Google Scholar 

  33. Cheng N, Tsunenari T, Yau KW (2009) Intrinsic light response of retinal horizontal cells of teleosts. Nature. https://doi.org/10.1038/nature08175

    Article  PubMed  PubMed Central  Google Scholar 

  34. Clark WJ, Porter B, Colombo M (2019) Searching for face-category representation in the avian visual forebrain. Front Physiol. https://doi.org/10.3389/fphys.2019.00140

    Article  PubMed  PubMed Central  Google Scholar 

  35. Contín MA, Arietti MM, Benedetto MM et al (2013) Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals. Mol Vis 19:1614–1625

    PubMed  PubMed Central  Google Scholar 

  36. Contín MA, Benedetto MM, Quinteros-Quintana ML, Guido ME (2016) Light pollution: the possible consequences of excessive illumination on retina. Eye 30(2):255–263. https://doi.org/10.1038/eye.2015.221

    CAS  Article  PubMed  Google Scholar 

  37. Contín M, Verra DM, Guido ME et al (2006) An invertebrate-like phototransduction cascade mediates light detection in the chicken retinal ganglion cells. FASEB J. https://doi.org/10.1096/fj.06-6133fje

    Article  PubMed  Google Scholar 

  38. Contín MA, Verra DM, Salvador G et al (2010) Light activation of the phosphoinositide cycle in intrinsically photosensitive chicken retinal ganglion cells. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.10-5643

    Article  Google Scholar 

  39. Cronin TW, Johnsen S, Marshall NJ, Warrant EJ (2014) Visual ecology. Princeton University Press, Princeton

    Book  Google Scholar 

  40. Currie SP, Doherty GH, Sillar KT (2016) Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1515516113

    Article  PubMed  Google Scholar 

  41. Dacey DM, Liao HW, Peterson BB et al (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. https://doi.org/10.1038/nature03387

    Article  PubMed  Google Scholar 

  42. Davies WL, Hankins MW, Foster RG (2010) Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochem Photobiol Sci. https://doi.org/10.1039/c0pp00203h

    Article  PubMed  Google Scholar 

  43. Darwin C (1859) On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. J. Murray, London

  44. Devlin PF, Kay SA (2001) Circadian photoperception. Annu Rev Physiol. https://doi.org/10.1146/annurev.physiol.63.1.677

    Article  PubMed  Google Scholar 

  45. Diamond JS (2017) Inhibitory interneurons in the retina: types, circuitry, and function. Annu Rev Vis Sci. https://doi.org/10.1146/annurev-vision-102016-061345

    Article  PubMed  Google Scholar 

  46. Díaz NM, Morera LP, Guido ME (2016) Melanopsin and the non-visual photochemistry in the inner retina of vertebrates. Photochem Photobiol 92(1):29–44. https://doi.org/10.1111/php.12545

    CAS  Article  PubMed  Google Scholar 

  47. Díaz NM, Morera LP, Tempesti T, Guido ME (2017) The visual cycle in the inner retina of chicken and the involvement of retinal G-protein-coupled receptor (RGR). Mol Neurobiol. https://doi.org/10.1007/s12035-016-9830-5

    Article  PubMed  Google Scholar 

  48. Díaz NM, Morera LP, Verra DM et al (2014) Early appearance of nonvisual and circadian markers in the developing inner retinal cells of chicken. Biomed Res Int. https://doi.org/10.1155/2014/646847

    Article  PubMed  PubMed Central  Google Scholar 

  49. Do MTH (2019) Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104(2):205–226. https://doi.org/10.1016/j.neuron.2019.07.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Do MTH, Kang SH, Xue T et al (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature. https://doi.org/10.1038/nature07682

    Article  PubMed  Google Scholar 

  51. Doyle SE, Grace MS, McIvor W, Menaker M (2002) Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci 19:593–601. https://doi.org/10.1017/s0952523802195058

    Article  PubMed  Google Scholar 

  52. Doyle SE, McIvor WE, Menaker M (2002) Circadian rhythmicity in dopamine content of mammalian retina: role of the photoreceptors. J Neurochem 83:211–219. https://doi.org/10.1046/j.1471-4159.2002.01149.x

    CAS  Article  PubMed  Google Scholar 

  53. Ebihara S, Tsuji K (1980) Entrainment of the circadian activity rhythm to the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol Behav. https://doi.org/10.1016/0031-9384(80)90246-2

    Article  PubMed  Google Scholar 

  54. Ecker JL, Dumitrescu ON, Wong KY et al (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron. https://doi.org/10.1016/j.neuron.2010.05.023

    Article  PubMed  PubMed Central  Google Scholar 

  55. Emanuel AJ, Do MTH (2015) Melanopsin tristability for sustained and broadband phototransduction. Neuron. https://doi.org/10.1016/j.neuron.2015.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  56. Felder-Schmittbuhl MP et al (2018) Ocular clocks: adapting mechanisms for eye functions and health. Investig Ophthalmol Vis Sci 59:4856–4870. https://doi.org/10.1167/iovs.18-24957

    CAS  Article  Google Scholar 

  57. Fernandez DC, Fogerson PM, Lazzerini Ospri L et al (2018) Light affects mood and learning through distinct retina-brain pathways. Cell. https://doi.org/10.1016/j.cell.2018.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fischer RM, Fontinha BM, Kirchmaier S et al (2013) Co-expression of VAL- and TMT-opsins uncovers ancient photosensory interneurons and motorneurons in the vertebrate brain. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001585

    Article  PubMed  PubMed Central  Google Scholar 

  59. Foster RG, Hankins MW (2002) Non-rod, non-cone photoreception in the vertebrates. Prog Retin Eye Res. https://doi.org/10.1016/s1350-9462(02)00036-8

    Article  PubMed  Google Scholar 

  60. Foster RG, Provencio I, Hudson D et al (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A. https://doi.org/10.1007/BF00198171

    Article  PubMed  Google Scholar 

  61. Freedman MS, Lucas RJ, Soni B et al (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. https://doi.org/10.1126/science.284.5413.502

    Article  PubMed  Google Scholar 

  62. Garbarino-Pico E, Carpentieri AR, Castagnet PI, Pasquare SJ, Giusto NM, Caputto BL, Guido ME (2004) Synthesis of retinal ganglion cell phospholipids is under control of an endogenous circadian clock: daily variations in phospholipid-synthesizing enzyme activities. J Neurosci Res 76:642–652. https://doi.org/10.1002/jnr.20126

    CAS  Article  PubMed  Google Scholar 

  63. Garbarino-Pico E et al (2004) Retinal ganglion cells are autonomous circadian oscillators synthesizing N-acetylserotonin during the day. J Biol Chem 279:51172–51181. https://doi.org/10.1074/jbc.M309248200

    CAS  Article  PubMed  Google Scholar 

  64. Garbarino-Pico E et al (2005) Rhythms of glycerophospholipid synthesis in retinal inner nuclear layer cells. Neurochem Int 47:260–270. https://doi.org/10.1016/j.neuint.2005.04.024

    CAS  Article  PubMed  Google Scholar 

  65. García-Fernández JM, Cernuda-Cernuda R, Davies WIL et al (2015) The hypothalamic photoreceptors regulating seasonal reproduction in birds: a prime role for VA opsin. Front Neuroendocrinol. https://doi.org/10.1016/j.yfrne.2014.11.001

    Article  PubMed  Google Scholar 

  66. Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15(9):371–377. https://doi.org/10.1016/s0168-9525(99)01776-x

    CAS  Article  PubMed  Google Scholar 

  67. Gerkema MP, Davies WIL, Foster RG et al (2013) The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc R Soc B Biol Sci 280(1765):20130508. https://doi.org/10.1098/rspb.2013.0508

    Article  Google Scholar 

  68. Green CB, Besharse JC (1996) Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin. Proc Natl Acad Sci USA 93:14884–14888. https://doi.org/10.1073/pnas.93.25.14884

    CAS  Article  PubMed  Google Scholar 

  69. Grimm C, Wenzel A, Williams TP et al (2001) Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Investig Ophthalmol Vis Sci 42(2):497–505

    CAS  Google Scholar 

  70. Guido ME, Garbarino Pico E, Caputto BL (2001) Circadian regulation of phospholipid metabolism in retinal photoreceptors and ganglion cells. J Neurochem 76:835–845. https://doi.org/10.1046/j.1471-4159.2001.00081.x

    CAS  Article  PubMed  Google Scholar 

  71. Guido ME, Garbarino-Pico E, Contin MA et al (2010) Inner retinal circadian clocks and non-visual photoreceptors: novel players in the circadian system. Prog Neurobiol 92(4):484–504. https://doi.org/10.1016/j.pneurobio.2010.08.005

    Article  PubMed  Google Scholar 

  72. Guido ME, Goguen D, De Guido L, Robertson HA, Rusak B (1999) Circadian and photic regulation of immediate-early gene expression in the hamster suprachiasmatic nucleus. Neuroscience 90:555–571. https://doi.org/10.1016/s0306-4522(98)00467-9

    CAS  Article  PubMed  Google Scholar 

  73. Güler AD, Ecker JL, Lall GS et al (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. https://doi.org/10.1038/nature06829

    Article  PubMed  PubMed Central  Google Scholar 

  74. Halford S, Bellingham J, Ocaka L et al (2002) Assignment1 of panopsin (OPN3) to human chromosome band 1q43 by in situ hybridization and somatic cell hybrids. Cytogenet Cell Genet. https://doi.org/10.1159/000059351

    Article  Google Scholar 

  75. Halford S, Freedman MS, Bellingham J et al (2001) Characterization of a novel human opsin gene with wide tissue expression and identification of embedded and flanking genes on chromosome 1q43. Genomics. https://doi.org/10.1006/geno.2001.6469

    Article  PubMed  Google Scholar 

  76. Hamm HE, Menaker M (1980) Retinal rhythms in chicks: circadian variation in melantonin and serotonin N-acetyltransferase activity. Proc Natl Acad Sci USA 77:4998–5002. https://doi.org/10.1073/pnas.77.8.4998

    CAS  Article  PubMed  Google Scholar 

  77. Hankins MW, Peirson SN, Foster RG (2008) Melanopsin: an exciting photopigment. Trends Neurosci 31:27–36. https://doi.org/10.1016/j.tins.2007.11.002

    CAS  Article  PubMed  Google Scholar 

  78. Hannibal J, Georg B, Hindersson P, Fahrenkrug J (2005) Light and darkness regulate melanopsin in the retinal ganglion cells of the albino Wistar rat. J Mol Neurosci 27:147–155. https://doi.org/10.1385/JMN:27:2:147

    CAS  Article  PubMed  Google Scholar 

  79. Hannibal J, Hindersson P, Østergaard J et al (2004) Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.04-0313

    Article  Google Scholar 

  80. Hao W, Fong HKW (1996) Blue and ultraviolet light-absorbing opsin from the retinal pigment epithelium. Biochemistry. https://doi.org/10.1021/bi952420k

    Article  PubMed  Google Scholar 

  81. Hao W, Fong HKW (1999) The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium. J Biol Chem. https://doi.org/10.1074/jbc.274.10.6085

    Article  PubMed  Google Scholar 

  82. Hastings MH, Maywood ES, Brancaccio M (2019) The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology 8:13. https://doi.org/10.3390/biology8010013

    CAS  Article  PubMed Central  Google Scholar 

  83. Hattar S, Liao HW, Takao M et al (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. https://doi.org/10.1126/science.1069609

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hattar S, Lucas RJ, Mrosovsky N et al (2003) Melanopsin and rod—cone photoreceptive systems account for all major accessory visual functions in mice. Nature. https://doi.org/10.1038/nature01761

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hillman P (1979a) Bistable and sensitizing pigments in vision. Biophys Struct Mech. https://doi.org/10.1007/BF00535440

    Article  PubMed  Google Scholar 

  86. Hillman P (1979b) Introduction to the Symposium on bistable and sensitizing pigments in vision. Biophys Struct Mech. https://doi.org/10.1007/BF00535441

    Article  PubMed  Google Scholar 

  87. Hollborn M, Ulbricht E, Rillich K, Dukic-Stefanovic S, Wurm A, Wagner L, Reichenbach A, Wiedemann P, Limb GA, Bringmann A, Kohen L (2011) The human Müller cell line MIO-M1 expresses opsins. Mol Vis 17:2738–2750

  88. Hughes S, Rodgers J, Hickey D et al (2016) Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci Rep. https://doi.org/10.1038/srep28086

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hunt DM, Dulai KS, Partridge JC et al (2001) The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Biol 204:11606607

    Google Scholar 

  90. Jenkins A, Muñoz M, Tarttelin EE et al (2003) VA opsin, melanopsin, and an inherent light response within retinal interneurons. Curr Biol. https://doi.org/10.1016/S0960-9822(03)00509-8

    Article  PubMed  Google Scholar 

  91. Jerison HJ (1973) Evolution of the brain and intelligence. Academy Press, New York

    Google Scholar 

  92. Jiang Z, Yue WWS, Chen L et al (2018) Cyclic-nucleotide- and HCN-channel-mediated phototransduction in intrinsically photosensitive retinal ganglion cells. Cell 175(3):652-664.e12. https://doi.org/10.1016/j.cell.2018.08.055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Kang SW, Kuenzel WJ (2015) Deep-brain photoreceptors (DBPs) involved in the photoperiodic gonadal response in an avian species, Gallus gallus. Gen Comp Endocrinol. 211:106. https://doi.org/10.1016/j.ygcen.2014.11.020

    CAS  Article  PubMed  Google Scholar 

  94. Kato M, Sugiyama T, Sakai K et al (2016) Two opsin 3-related proteins in the chicken retina and brain: a TMT-type opsin 3 is a blue-light sensor in retinal horizontal cells, hypothalamus, and cerebellum. PLoS ONE. https://doi.org/10.1371/journal.pone.0163925

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kaylor JJ, Cook JD, Makshanoff J et al (2014) Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-Acyltransferase (MFAT). Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1319142111

    Article  PubMed  Google Scholar 

  96. Kaylor JJ, Radu RA, Bischoff N et al (2015) Diacylglycerol O-acyltransferase type-1 synthesizes retinyl esters in the retina and retinal pigment epithelium. PLoS ONE. https://doi.org/10.1371/journal.pone.0125921

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kaylor JJ, Yuan Q, Cook J et al (2013) Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol. https://doi.org/10.1038/nchembio.1114

    Article  PubMed  Google Scholar 

  98. Keeler CE (1927) Iris movement in blind mice. Am J Physiol Content. https://doi.org/10.1152/ajplegacy.1927.81.1.107

    Article  Google Scholar 

  99. Kiser PD, Golczak M, Palczewski K (2014) Chemistry of the retinoid (visual) cycle. Chem Rev. https://doi.org/10.1021/cr400107q

    Article  PubMed  Google Scholar 

  100. Ko GY (2020) Circadian regulation in the retina: from molecules to network. Eur J Neurosci 51:194–216. https://doi.org/10.1111/ejn.14185

    Article  PubMed  Google Scholar 

  101. Ko GY, Ko ML, Dryer SE (2001) Circadian regulation of cGMP-gated cationic channels of chick retinal cones. Erk MAP Kinase and Ca2+/calmodulin-dependent protein kinase II. Neuron 29:255–266. https://doi.org/10.1016/s0896-6273(01)00195-7

    CAS  Article  PubMed  Google Scholar 

  102. Ko GY, Ko ML, Dryer SE (2003) Circadian phase-dependent modulation of cGMP-gated channels of cone photoreceptors by dopamine and D2 agonist. J Neurosci 23:3145–3153. https://doi.org/10.1523/JNEUROSCI.23-08-03145.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Kojima D, Mano H, Fukada Y (2000) Vertebrate ancient-Long opsin: a green-sensitive photoreceptive molecule present in zebrafish deep brain and retinal horizontal cells. J Neurosci. https://doi.org/10.1523/jneurosci.20-08-02845.2000

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kojima D, Mori S, Torii M et al (2011) UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0026388

    Article  PubMed  PubMed Central  Google Scholar 

  105. Koyanagi M, Kubokawa K, Tsukamoto H et al (2005) Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol. https://doi.org/10.1016/j.cub.2005.04.063

    Article  PubMed  Google Scholar 

  106. Koyanagi M, Takada E, Nagata T et al (2013) Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1219416110

    Article  PubMed  Google Scholar 

  107. Koyanagi M, Terakita A (2014) Diversity of animal opsin-based pigments and their optogenetic potential. Biochim Biophys Acta. https://doi.org/10.1016/j.bbabio.2013.09.003

    Article  PubMed  Google Scholar 

  108. Koyanagi M, Terakita A (2008) Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol. https://doi.org/10.1111/j.1751-1097.2008.00369.x

    Article  PubMed  Google Scholar 

  109. Lamb TD (2013) (2013) Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res 36:52–119. https://doi.org/10.1016/j.preteyeres.2013.06.001

    CAS  Article  PubMed  Google Scholar 

  110. Lamb TD, Collin SP, Pugh EN (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8(12):960–976. https://doi.org/10.1038/nrn2283

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. LaVail MM (1980) Circadian nature of rod outer segment disc shedding in the rat. Investig Ophthalmol Vis Sci 19:407–411

    CAS  Google Scholar 

  112. Lhor M, Salesse C (2014) Retinol dehydrogenases: membrane-bound enzymes for the visual function1. Biochem Cell Biol. https://doi.org/10.1139/bcb-2014-0082

    Article  PubMed  Google Scholar 

  113. Li P, Temple S, Gao Y, Haimberger TJ, Hawryshyn CW, Li L (2005) Circadian rhythms of behavioral cone sensitivity and long wavelength opsin mRNA expression: a correlation study in zebrafish. J Exp Biol 208:497–504. https://doi.org/10.1242/jeb.01424

    CAS  Article  PubMed  Google Scholar 

  114. Lin B, Koizumi A, Tanaka N et al (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0806114105

    Article  PubMed  Google Scholar 

  115. Lucas RJ (2013) Mammalian inner retinal photoreception. Curr Biol. https://doi.org/10.1016/j.cub.2012.12.029

    Article  PubMed  Google Scholar 

  116. Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci. https://doi.org/10.1038/88443

    Article  PubMed  Google Scholar 

  117. Lucas RJ, Freedman MS, Muñoz M et al (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. https://doi.org/10.1126/science.284.5413.505

    Article  PubMed  Google Scholar 

  118. Lucas RJ, Hattar S, Takao M et al (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. https://doi.org/10.1126/science.1077293

    Article  PubMed  Google Scholar 

  119. MacDonald RB, Charlton-Perkins M, Harris WA (2017) Mechanisms of Müller glial cell morphogenesis. Curr Opin Neurobiol. https://doi.org/10.1016/j.conb.2017.08.005

    Article  PubMed  Google Scholar 

  120. Maeda T, Van Hooser JP, Driessen CAGG et al (2003) Evaluation of the role of the retinal G protein-coupled receptor (RGR) in the vertebrate retina in vivo. J Neurochem. https://doi.org/10.1046/j.1471-4159.2003.01741.x

    Article  PubMed  PubMed Central  Google Scholar 

  121. Manglapus MK, Uchiyama H, Buelow NF, Barlow RB (1998) Circadian rhythms of rod-cone dominance in the Japanese quail retina. J Neurosci 18:4775–4784

    CAS  Article  Google Scholar 

  122. Marek V, Reboussin E, Dégardin-Chicaud J et al (2019) Implication of melanopsin and trigeminal neural pathways in blue light photosensitivity in vivo. Front Neurosci. https://doi.org/10.3389/fnins.2019.00497

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mata NL, Radu RA, Clemmons RS, Travis GH (2002) Isomerization and oxidation of vitamin A in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron. https://doi.org/10.1016/S0896-6273(02)00912-1

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mathes A, Engel L, Holthues H, Wolloscheck T, Spessert R (2007) Daily profile in melanopsin transcripts depends on seasonal lighting conditions in the rat retina. J Neuroendocrinol 19:952–957. https://doi.org/10.1111/j.1365-2826.2007.01608.x

    CAS  Article  PubMed  Google Scholar 

  125. Matos-Cruz V, Blasic J, Nickle B, Robinson PR, Hattar S, Halpern ME (2011) Unexpected diversity and photoperiod dependence of the zebrafish melanopsin system. PLoS ONE 6:e25111. https://doi.org/10.1371/journal.pone.0025111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. McGinnis JF, Whelan JP, Donoso LA (1992) Transient, cyclic changes in mouse visual cell gene products during the light-dark cycle. J Neurosci Res 31:584–590. https://doi.org/10.1002/jnr.490310325

    CAS  Article  PubMed  Google Scholar 

  127. McGoogan JM, Cassone VM (1999) Circadian regulation of chick electroretinogram: effects of pinealectomy and exogenous melatonin. Am J Physiol 277:R1418-1427. https://doi.org/10.1152/ajpregu.1999.277.5.R1418

    CAS  Article  PubMed  Google Scholar 

  128. McMahon DG, Iuvone PM, Tosini G (2014) Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Prog Retin Eye Res 39:58–76. https://doi.org/10.1016/j.preteyeres.2013.12.001

    CAS  Article  PubMed  Google Scholar 

  129. Meister M, Tessier-Lavigne M (2013) Low-level visual processing: the retina. Princ Neural Sci Fifth Ed

  130. Melyan Z, Tarttelin EE, Bellingham J et al (2005) Addition of human melanopsin renders mammalian cells photoresponsive. Nature. https://doi.org/10.1038/nature03344

    Article  PubMed  Google Scholar 

  131. Metea MR, Newman EA (2006) Calcium signaling in specialized glial cells. Glia. https://doi.org/10.1002/glia.20352

    Article  PubMed  PubMed Central  Google Scholar 

  132. Minamoto T, Shimizu I (2002) A novel isoform of vertebrate ancient opsin in a smelt fish, Plecoglossus altivelis. Biochem Biophys Res Commun. https://doi.org/10.1006/bbrc.2001.6186

    Article  PubMed  Google Scholar 

  133. Moore RY (1995) Neural control of the pineal gland. Behav Brain Res. https://doi.org/10.1016/0166-4328(96)00083-6

    Article  Google Scholar 

  134. Morera LP, Díaz NM, Guido ME (2016) Horizontal cells expressing melanopsin x are novel photoreceptors in the avian inner retina. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1608901113

    Article  PubMed  Google Scholar 

  135. Morshedian A, Kaylor JJ, Ng SY et al (2019) Light-driven regeneration of cone visualpPigments through a mechanism involving RGR opsin in müller glial cells. Neuron. https://doi.org/10.1016/j.neuron.2019.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  136. Moutsaki P, Bellingham J, Soni BG et al (2000) Sequence, genomic structure and tissue expression of carp (Cyprinus carpio L.) vertebrate ancient (VA) opsin. FEBS Lett. https://doi.org/10.1016/S0014-5793(00)01550-7

    Article  PubMed  Google Scholar 

  137. Moutsaki P, Whitmore D, Bellingham J et al (2003) Teleost multiple tissue (tmt) opsin: a candidate photopigment regulating the peripheral clocks of zebrafish? Mol Brain Res. https://doi.org/10.1016/S0169-328X(03)00059-7

    Article  PubMed  Google Scholar 

  138. Mure LS et al (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. https://doi.org/10.1126/science.aao0318

    Article  PubMed  PubMed Central  Google Scholar 

  139. Nakane Y, Ikegami K, Ono H et al (2010) A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1006393107

    Article  PubMed  Google Scholar 

  140. Nelson DE, Takahashi JS (1991) Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J Physiol. https://doi.org/10.1113/jphysiol.1991.sp018660

    Article  PubMed  PubMed Central  Google Scholar 

  141. Newman EA (2005) Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1354-05.2005

    Article  PubMed  PubMed Central  Google Scholar 

  142. Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci. https://doi.org/10.1523/jneurosci.23-05-01659.2003

    Article  PubMed  PubMed Central  Google Scholar 

  143. Nguyen MTT, Vemaraju S, Nayak G et al (2019) An opsin 5–dopamine pathway mediates light-dependent vascular development in the eye. Nat Cell Biol. https://doi.org/10.1038/s41556-019-0301-x

    Article  PubMed  PubMed Central  Google Scholar 

  144. Nieto PS, Valdez DJ, Acosta-Rodríguez VA, Guido ME (2011) Expression of novel opsins and intrinsic light responses in the mammalian retinal ganglion cell line RGC-5. Presence of Opn5 in the rat retina. PLoS ONE. https://doi.org/10.1371/journal.pone.0026417

    Article  PubMed  PubMed Central  Google Scholar 

  145. Noell WK (1979) Effects of environmental lighting and dietary vitamin a on the vulnerability of the retina to light damage. Photochem Photobiol. https://doi.org/10.1111/j.1751-1097.1979.tb07756.x

    Article  PubMed  Google Scholar 

  146. Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5(5):450–473

    CAS  PubMed  Google Scholar 

  147. Olinski LE, Lin EM, Oancea E (2020) Illuminating insights into opsin 3 function in the skin. Adv Biol Regul. https://doi.org/10.1016/j.jbior.2019.100668

    Article  PubMed  Google Scholar 

  148. Organisciak DT, Darrow RM, Barsalou L et al (1998) Light history and age-related changes in retinal light damage. Investig Ophthalmol Vis Sci 39(7):1107–1116

    CAS  Google Scholar 

  149. Organisciak DT, Darrow RM, Barsalou L, Kutty RK, Wiggert B (2000) Circadian-dependent retinal light damage in rats. Investig ophthalmol Vis Sci 41:3694–3701

    CAS  Google Scholar 

  150. Ota W, Nakane Y, Hattar S, Yoshimura T (2018) Impaired circadian photoentrainment in Opn5-null mice. iScience. https://doi.org/10.1016/j.isci.2018.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664. https://doi.org/10.1073/pnas.95.15.8660

    CAS  Article  PubMed  Google Scholar 

  152. Ozdeslik RN, Olinski LE, Trieu MM et al (2019) Human nonvisual opsin 3 regulates pigmentation of epidermal melanocytes through functional interaction with melanocortin 1 receptor. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1902825116

    Article  PubMed  Google Scholar 

  153. Panda S, Nayak SK, Campo B et al (2005) Illumination of the melanopsin signaling pathway. Science. https://doi.org/10.1126/science.1105121

    Article  PubMed  Google Scholar 

  154. Panda S, Provencio I, Tu DC et al (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science. https://doi.org/10.1126/science.1086179

    Article  PubMed  Google Scholar 

  155. Pandey S, Blanks JC, Spee C et al (1994) Cytoplasmic retinal localization of an evolutionary homolog of the visual pigments. Exp Eye Res. https://doi.org/10.1006/exer.1994.1055

    Article  PubMed  Google Scholar 

  156. Peirson SN, Haiford S, Foster RG (2009) The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2009.0050

    Article  Google Scholar 

  157. Penn JS, Baker BN, Howard AG, Williams TP (1985) Retinal light-damage in albino rats: lysosomal enzymes, rhodopsin, and age. Exp Eye Res. https://doi.org/10.1016/S0014-4835(85)80017-8

    Article  PubMed  Google Scholar 

  158. Pierce ME, Sheshberadaran H, Zhang Z, Fox LE, Applebury ML, Takahashi JS (1993) Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron 10:579–584. https://doi.org/10.1016/0896-6273(93)90161-j

    CAS  Article  PubMed  Google Scholar 

  159. Poché RA, Reese BE (2009) Retinal horizontal cells: challenging paradigms of neural development and cancer biology. Development. https://doi.org/10.1242/dev.033175

    Article  PubMed  PubMed Central  Google Scholar 

  160. Porter ML, Blasic JR, Bok MJ et al (2011) Shedding new light on opsin evolution. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2011.1819

    Article  Google Scholar 

  161. Provencio I, Foster RG (1993) Vitamin A2-based photopigments within the pineal gland of a fully terrestrial vertebrate. Neurosci Lett. https://doi.org/10.1016/0304-3940(93)90713-U

    Article  PubMed  Google Scholar 

  162. Provencio I, Jiang G, De Grip WJ et al (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.95.1.340

    Article  PubMed  Google Scholar 

  163. Provencio I, Loew ER, Foster RG (1992) Vitamin A2-based visual pigments in fully terrestrial vertebrates. Vis Res. https://doi.org/10.1016/0042-6989(92)90084-V

    Article  PubMed  Google Scholar 

  164. Provencio I, Rodriguez IR, Jiang G et al (2000) A novel human opsin in the inner retina. J Neurosci. https://doi.org/10.1523/JNEUROSCI.20-02-00600.2000

    Article  PubMed  PubMed Central  Google Scholar 

  165. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature. https://doi.org/10.1038/415493a

    Article  PubMed  Google Scholar 

  166. Qiu X, Kumbalasiri T, Carlson SM et al (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature. https://doi.org/10.1038/nature03345

    Article  PubMed  Google Scholar 

  167. Radu RA, Hu J, Peng J et al (2008) Retinal pigment epithelium-retinal G protein receptor-opsin mediates light-dependent translocation of all-trans-retinyl esters for synthesis of visual chromophore in retinal pigment epithelial cells. J Biol Chem. https://doi.org/10.1074/jbc.M801288200

    Article  PubMed  PubMed Central  Google Scholar 

  168. Raible F, Tessmar-Raible K, Arboleda E et al (2006) Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol. https://doi.org/10.1016/j.ydbio.2006.08.070

    Article  PubMed  Google Scholar 

  169. Regazzetti C, Sormani L, Debayle D et al (2018) Melanocytes sense blue light and regulate pigmentation through opsin-3. J Invest Dermatol. https://doi.org/10.1016/j.jid.2017.07.833

    Article  PubMed  Google Scholar 

  170. Ribelayga C, Cao Y, Mangel SC (2008) The circadian clock in the retina controls rod-cone coupling. Neuron 59:790–801. https://doi.org/10.1016/j.neuron.2008.07.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  171. Rillich K, Gentsch J, Reichenbach A et al (2009) Light stimulation evokes two different calcium responses in Müller glial cells of the guinea pig retina. Eur J Neurosci. https://doi.org/10.1111/j.1460-9568.2009.06682.x

    Article  PubMed  Google Scholar 

  172. Rios MN, Marchese NA, Guido ME (2019) Expression of non-visual opsins Opn3 and Opn5 in the developing inner retinal cells of birds. Light-responses in müller glial cells. Front Cell Neurosci. https://doi.org/10.3389/fncel.2019.00376

    Article  PubMed  PubMed Central  Google Scholar 

  173. Roenneberg T, Foster RG (1997) Twilight times: light and the circadian system. Photochem Photobiol. https://doi.org/10.1111/j.1751-1097.1997.tb03188.x

    Article  PubMed  Google Scholar 

  174. Rusak B, Boulos Z (1981) Pathways for photic entrainment of mammalian circadian rhythms. Photochem Photobiol 34:267–273. https://doi.org/10.1111/j.1751-1097.1981.tb08996.x

    CAS  Article  PubMed  Google Scholar 

  175. Sakai K, Yamashita T, Imamoto Y, Shichida Y (2015) Diversity of active states in TMT opsins. PLoS ONE. https://doi.org/10.1371/journal.pone.0141238

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sakamoto K, Liu C, Tosini G (2004) Classical photoreceptors regulate melanopsin mRNA levels in the rat retina. J Neurosci 24:9693–9697. https://doi.org/10.1523/JNEUROSCI.2556-04.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  177. Santillo S, Orlando P, De Petrocellis L et al (2006) Evolving visual pigments: hints from the opsin-based proteins in a phylogenetically old “eyeless” invertebrate. BioSystems. https://doi.org/10.1016/j.biosystems.2006.03.008

    Article  PubMed  Google Scholar 

  178. Sato K, Yamashita T, Ohuchi H, Shichida Y (2011) Vertebrate ancient-long opsin has molecular properties intermediate between those of vertebrate and invertebrate visual pigments. Biochemistry. https://doi.org/10.1021/bi201212z

    Article  PubMed  PubMed Central  Google Scholar 

  179. Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. https://doi.org/10.1016/j.tins.2011.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  180. Schmidt TM, Kofuji P (2009) Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci. https://doi.org/10.1523/JNEUROSCI.4117-08.2009

    Article  PubMed  PubMed Central  Google Scholar 

  181. Sekaran S, Lupi D, Jones SL et al (2005) Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol. https://doi.org/10.1016/j.cub.2005.05.053

    Article  PubMed  PubMed Central  Google Scholar 

  182. Sexton TJ, Golczak M, Palczewski K, Van Gelder RN (2012) Melanopsin is highly resistant to light and chemical bleaching in vivo. J Biol Chem. https://doi.org/10.1074/jbc.M111.325969

    Article  PubMed  PubMed Central  Google Scholar 

  183. Shen D, Jiang M, Hao W et al (1994) A human opsin-related gene that encodes a retinaldehyde-binding protein. Biochemistry. https://doi.org/10.1021/bi00248a022

    Article  PubMed  Google Scholar 

  184. Shichida Y, Matsuyama T (2009) Evolution of opsins and phototransduction. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2009.0051

    Article  Google Scholar 

  185. Shirzad-Wasei N, Van Oostrum J, Bovee-Geurts PH et al (2013) Large scale expression and purification of mouse melanopsin-L in the baculovirus expression system. Protein Express Purif. https://doi.org/10.1016/j.pep.2013.07.010

    Article  Google Scholar 

  186. Sondereker KB, Stabio ME, Renna JM (2020) Crosstalk: the diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision. J Comp Neurol. https://doi.org/10.1002/cne.24873

    Article  PubMed  Google Scholar 

  187. Soni BG, Foster RG (1997) A novel and ancient vertebrate opsin. FEBS Lett. https://doi.org/10.1016/S0014-5793(97)00287-1

    Article  PubMed  Google Scholar 

  188. Soni BG, Philp AR, Foster RG, Knox BE (1998) Novel retinal photoreceptors [3]. Nature. https://doi.org/10.1038/27794

    Article  PubMed  Google Scholar 

  189. Sonoda T, Lee SK, Birnbaumer L, Schmidt TM (2018) Melanopsin phototransduction is repurposed by ipRGC subtypes to shape the function of distinct visual circuits. Neuron. https://doi.org/10.1016/j.neuron.2018.06.032

    Article  PubMed  PubMed Central  Google Scholar 

  190. Sonoda T, Li JY, Hayes NW et al (2020) A noncanonical inhibitory circuit dampens behavioral sensitivity to light. Science. https://doi.org/10.1126/science.aay3152

    Article  PubMed  PubMed Central  Google Scholar 

  191. Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, Weitz CJ (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130:730–741. https://doi.org/10.1016/j.cell.2007.06.045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  192. Sugihara T, Nagata T, Mason B et al (2016) Absorption characteristics of vertebrate non-visual opsin, Opn3. PLoS ONE. https://doi.org/10.1371/journal.pone.0161215

    Article  PubMed  PubMed Central  Google Scholar 

  193. Sugiyama T, Suzuki H, Takahashi T (2014) Light-induced rapid Ca2+ response and MAPK phosphorylation in the cells heterologously expressing human OPN5. Sci Rep. https://doi.org/10.1038/srep05352

    Article  PubMed  PubMed Central  Google Scholar 

  194. Sun L, Kawano-Yamashita E, Nagata T et al (2014) Distribution of mammalian-like melanopsin in cyclostome retinas exhibiting a different extent of visual functions. PLoS ONE. https://doi.org/10.1371/journal.pone.0108209

    Article  PubMed  PubMed Central  Google Scholar 

  195. Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179. https://doi.org/10.1038/nrg.2016.150

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  196. Tarttelin EE, Bellingham J, Hankins MW et al (2003) Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett. https://doi.org/10.1016/S0014-5793(03)01212-2

    Article  PubMed  Google Scholar 

  197. Tchernookova BK, Heer C, Young M et al (2018) Activation of retinal glial (Müller) cells by extracellular ATP induces pronounced increases in extracellular H+ flux. PLoS ONE. https://doi.org/10.1371/journal.pone.0190893

    Article  PubMed  PubMed Central  Google Scholar 

  198. Terakita A (2005) The opsins. Genome Biol. https://doi.org/10.1186/gb-2005-6-3-213

    Article  PubMed  PubMed Central  Google Scholar 

  199. Terakita A, Nagata T (2014) Functional properties of opsins and their contribution to light-sensing physiology. Zool Sci. https://doi.org/10.2108/zs140094

    Article  Google Scholar 

  200. Terakita A, Tsukamoto H, Koyanagi M et al (2008) Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J Neurochem. https://doi.org/10.1111/j.1471-4159.2007.05184.x

    Article  PubMed  Google Scholar 

  201. Tessier-Lavigne M (1991) Phototransduction and information processing in the retina. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 3rd edn. Appleton & Lange, Norwalk, pp 401–418

    Google Scholar 

  202. Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00261.x

    Article  PubMed  PubMed Central  Google Scholar 

  203. Thompson CL, Selby CP, Van Gelder RN et al (2004) Effect of vitamin A depletion on nonvisual phototransduction pathways in cryptochromeless mice. J Biol Rhythms. https://doi.org/10.1177/0748730404270519

    Article  PubMed  Google Scholar 

  204. Tomonari S, Takagi A, Noji S, Ohuchi H (2007) Expression pattern of the melanopsin-like (cOpn4m) and VA opsin-like genes in the developing chicken retina and neural tissues. Gene Expr Patterns. https://doi.org/10.1016/j.modgep.2007.06.001

    Article  PubMed  Google Scholar 

  205. Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272:419–421. https://doi.org/10.1126/science.272.5260.419

    CAS  Article  PubMed  Google Scholar 

  206. Tsukamoto H, Terakita A (2010) Diversity and functional properties of bistable pigments. Photochem Photobiol Sci. https://doi.org/10.1039/c0pp00168f

    Article  PubMed  Google Scholar 

  207. Tu DC, Owens LA, Anderson L et al (2006) Inner retinal photoreception independent of the visual retinoid cycle. Proc Natl Acad Sci USA 103:10426–10431. https://doi.org/10.1073/pnas.0600917103

    CAS  Article  PubMed  Google Scholar 

  208. Tu DC, Zhang D, Demas J et al (2005) Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron. https://doi.org/10.1016/j.neuron.2005.09.031

    Article  PubMed  Google Scholar 

  209. Valdez DJ, Garbarino-Pico E, Díaz NM et al (2012) Differential regulation of arylalkylamine N-acetyltransferase activity in chicken retinal ganglion cells by light and circadian clock. Chronobiol Int. https://doi.org/10.3109/07420528.2012.707160

    Article  PubMed  Google Scholar 

  210. Valdez DJ, Nieto PS, Della Costa NS et al (2015) Circadian control of the pupillary light responses in an avian model of blindness, the GUCY1* chickens. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.14-15481

    Article  Google Scholar 

  211. Valdez DJ, Nieto PS, Díaz NM et al (2013) Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness. FASEB J. https://doi.org/10.1096/fj.12-222885

    Article  PubMed  Google Scholar 

  212. Valdez DJ, Nieto PS, Garbarino-Pico E et al (2009) A nonmammalian vertebrate model of blindness reveals functional photoreceptors in the inner retina. FASEB J. https://doi.org/10.1096/fj.08-117085

    Article  PubMed  Google Scholar 

  213. Van Gelder RN, Wee R, Lee JA, Tu DC (2003) Physiology: reduced pupillary light responses in mice lacking cryptochromes. Science. https://doi.org/10.1126/science.1079536

    Article  PubMed  Google Scholar 

  214. Verra DM, Contín MA, Hicks D, Guido ME (2011) Early onset and differential temporospatial expression of melanopsin isoforms in the developing chicken retina. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.11-75301

    Article  Google Scholar 

  215. Von Schantz M, Lucas RJ, Foster RG (1999) Circadian oscillation of photopigment transcript levels in the mouse retina. Brain Res Mol Brain Res 72:108–114. https://doi.org/10.1016/s0169-328x(99)00209-0

    Article  Google Scholar 

  216. Wang X, Wang T, Jiao Y et al (2010) Requirement for an enzymatic visual cycle in Drosophila. Curr Biol. https://doi.org/10.1016/j.cub.2009.12.022

    Article  PubMed  PubMed Central  Google Scholar 

  217. Wang X, Wang T, Ni JD et al (2012) The drosophila visual cycle and de novo chromophore synthesis depends on rdhB. J Neurosci. https://doi.org/10.1523/JNEUROSCI.5350-11.2012

    Article  PubMed  PubMed Central  Google Scholar 

  218. Wee R, Van Gelder RN (2004) Sleep disturbances in young subjects with visual dysfunction. Ophthalmology. https://doi.org/10.1016/j.ophtha.2003.05.014

    Article  PubMed  Google Scholar 

  219. Weng S, Wong KY, Berson DM (2009) Circadian modulation of melanopsin-driven light response in rat ganglion-cell photoreceptors. J Biol Rhythm 24:391–402. https://doi.org/10.1177/0748730409343767

    CAS  Article  Google Scholar 

  220. Wenzel A, Grimm C, Samardzija M, Remé CE (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2004.08.002

    Article  PubMed  Google Scholar 

  221. Wirz-Justice A, Da Prada M, Reme C (1984) Circadian rhythm in rat retinal dopamine. Neurosci Lett 45:21–25. https://doi.org/10.1016/0304-3940(84)90323-9

    CAS  Article  PubMed  Google Scholar 

  222. Wong KY, Dunn FA, Berson DM (2005) Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48:1001–1010. https://doi.org/10.1016/j.neuron.2005.11.016

    CAS  Article  PubMed  Google Scholar 

  223. Wylie DR, Gutiérrez-Ibáñez C, Gaede AH et al (2018) Visual-cerebellar pathways and their roles in the control of avian flight. Front Neurosci. https://doi.org/10.3389/fnins.2018.00223

    Article  PubMed  PubMed Central  Google Scholar 

  224. Xu C, Wang R, Yang Y et al (2020) Expression of OPN3 in lung adenocarcinoma promotes epithelial-mesenchymal transition and tumor metastasis. Thorac Cancer. https://doi.org/10.1111/1759-7714.13254

    Article  PubMed  PubMed Central  Google Scholar 

  225. Yamashita T, Ohuchi H, Tomonari S et al (2010) Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1012498107

    Article  PubMed  Google Scholar 

  226. Yamashita T, Ono K, Ohuchi H et al (2014) Evolution of mammalian Opn5 as a specialized UV-absorbing pigment by a single amino acid mutation. J Biol Chem. https://doi.org/10.1074/jbc.M113.514075

    Article  PubMed  PubMed Central  Google Scholar 

  227. Yarfitz S, Hurley JB (1994) Transduction mechanisms of vertebrate and invertebrate photoreceptors. J Biol Chem 269:14329–14332

    CAS  PubMed  Google Scholar 

  228. Yau KW, Hardie RC (2009) Phototransduction motifs and variations. Cell. https://doi.org/10.1016/j.cell.2009.09.029

    Article  PubMed  PubMed Central  Google Scholar 

  229. Yokoyama S, Zhang H (1997) Cloning and characterization of the pineal gland-specific opsin gene of marine lamprey (Petromyzon marinus). Gene. https://doi.org/10.1016/S0378-1119(97)00458-7

    Article  PubMed  Google Scholar 

  230. Yoshimoto T, Morine Y, Takasu C et al (2018) Blue light-emitting diodes induce autophagy in colon cancer cells by Opsin 3. Ann Gastroenterol Surg. https://doi.org/10.1002/ags3.12055

    Article  PubMed  PubMed Central  Google Scholar 

  231. Yoshimura T, Ebihara S (1996) Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N ( + / + ) mice. J Comp Physiol A. https://doi.org/10.1007/BF00225828

    Article  PubMed  Google Scholar 

  232. Zeitzer JM, Dijk DJ, Kronauer RE et al (2000) Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol. https://doi.org/10.1111/j.1469-7793.2000.00695.x

    Article  PubMed  PubMed Central  Google Scholar 

  233. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA 111:16219–16224. https://doi.org/10.1073/pnas.1408886111

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by Agencia Nacional de Promoción Científica y Técnica (FONCyT, PICT 2016 No 0187 and 2017 No 631), Consejo Nacional de Investigaciones Científicas y Tecnológicas de la República Argentina (CONICET) (PIP 2014), and Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SeCyT-UNC, Consolidar 2018-2022). Authors are grateful to Ciencia Hoy for authorizing the partial use of Figure 1 from Guido ME (2016) Ciencia Hoy 151, 43-46. ISSN 1666-5171.

Author information

Affiliations

Authors

Contributions

All authors (MEG, NAM, MNR, NMD, LPM, EGP and MAC) contributed to the first draft of the manuscript, performed the literature search and data analysis, and critically revised the work. The illustrations were made by MEG, NMD and MNR. The last version was written by MEG and all authors commented on previous versions of the manuscript, read and approved the final version.

Corresponding author

Correspondence to Mario E. Guido.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guido, M.E., Marchese, N.A., Rios, M.N. et al. Non-visual Opsins and Novel Photo-Detectors in the Vertebrate Inner Retina Mediate Light Responses Within the Blue Spectrum Region. Cell Mol Neurobiol (2020). https://doi.org/10.1007/s10571-020-00997-x

Download citation

Keywords

  • Retina
  • Light responses
  • Opsin
  • Non-visual photopigment
  • Non-image forming activity
  • Circadian rhythm
  • Blue light