Astrocytes Regulate Differentiation and Glutamate Uptake of Glioma Stem Cells via Formyl Peptide Receptor

Abstract

The role of astrocytes on glutamate release and differentiation of glioma stem cells (GSCs) remains unknown. We investigated glutamate release, proliferation, and differentiation of GSCs after indirect incubation with astrocytes in vitro, including morphology change, GFAP expression, glutamine synthetase, and EAAT1 expression. The role of formyl peptide receptor (FPR) agonist and antagonist on interaction between astrocytes and GSCs in co-culture model was analyzed. We found: (1) After incubation of astrocytes and GSCs, differentiated GSCs present the morphology of astrocytes and express GFAP. (2) GSCs release high concentration of glutamate, as well as tumor cells. However, differentiated GSCs possess the ability of glutamate uptake. (3) Proliferation ability of differentiated GSCs is lower than tumor cells. (4) Glutamine synthetase is predominantly expressed in the nucleus of tumor cells, while in the cytoplasm of differentiated GSCs. (5) Differentiation of GSCs could be triggered by FPR agonist, while astrocyte-induced differentiation of GSCs could be blocked by FPR antagonist. These results indicate astrocytes promote astrocytic differentiation and glutamate uptake of GSCs via FPR.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aravalli RN, Behnan Sahin M, Cressman ENK, Steer CJ (2010) Establishment and characterization of a unique 1μm diameter liver-derived progenitor cell line. Biochem Biophys Res Commun 391(1):56–62. https://doi.org/10.1016/j.bbrc.2009.11.001

    Article  PubMed  CAS  Google Scholar 

  2. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653. https://doi.org/10.1111/j.1471-4159.2006.03913.x

    Article  PubMed  CAS  Google Scholar 

  3. Bernal GM, Peterson DA (2011) Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells. Aging Cell 10(3):466–482. https://doi.org/10.1111/j.1474-9726.2011.00694.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Boer JC, Domanska UM, Timmer-Bosscha H, Boer IG, de Haas CJ, Joseph JV, Kruyt FA, de Vries EG, den Dunnen WF, van Strijp JA, Walenkamp AM (2013) Inhibition of formyl peptide receptor in high-grade astrocytoma by CHemotaxis Inhibitory Protein of S. aureus. Br J Cancer 108(3):587–596. https://doi.org/10.1038/bjc.2012.603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bortolomai I, Canevari S, Facetti I, De Cecco L, Castellano G, Zacchetti A, Alison MR, Miotti S (2010) Tumor initiating cells: development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle 9(6):1194–1206. https://doi.org/10.4161/cc.9.6.11108

    Article  PubMed  CAS  Google Scholar 

  6. Bourkoula E, Mangoni D, Ius T, Pucer A, Isola M, Musiello D, Marzinotto S, Toffoletto B, Sorrentino M, Palma A, Caponnetto F, Gregoraci G, Vindigni M, Pizzolitto S, Falconieri G, De Maglio G, Pecile V, Ruaro ME, Gri G, Parisse P, Casalis L, Scoles G, Skrap M, Beltrami CA, Beltrami AP, Cesselli D (2014) Glioma-associated stem cells: a novel class of tumor-supporting cells able to predict prognosis of human low-grade gliomas. Stem Cells 32(5):1239–1253. https://doi.org/10.1002/stem.1605

    Article  PubMed  CAS  Google Scholar 

  7. Chen JH, Bian XW, Yao XH, Gong W, Hu J, Chen K, Iribarren P, Zhao W, Zhou XD (2006) Nordy, a synthetic lipoxygenase inhibitor, inhibits the expression of formylpeptide receptor and induces differentiation of malignant glioma cells. Biochem Biophys Res Commun 342(4):1368–1374. https://doi.org/10.1016/j.bbrc.2006.02.113

    Article  PubMed  CAS  Google Scholar 

  8. Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526. https://doi.org/10.1038/nature11287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cheng Y-H, Chen Y-C, Brien R, Yoon E (2016) Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip. Lab Chip 16(19):3708–3717. https://doi.org/10.1039/c6lc00778c

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chiu M, Taurino G, Bianchi MG, Ottaviani L, Andreoli R, Ciociola T, Lagrasta CA, Tardito S, Bussolati O (2018) Oligodendroglioma cells lack glutamine synthetase and are auxotrophic for glutamine, but do not depend on glutamine anaplerosis for growth. J Int J Mol Sci. https://doi.org/10.3390/ijms19041099

    Article  Google Scholar 

  11. Corbetta C, Di Ianni N, Bruzzone MG, Patane M, Pollo B, Cantini G, Cominelli M, Zucca I, Pisati F, Poliani PL, Finocchiaro G, Pellegatta S (2019) Altered function of the glutamate-aspartate transporter GLAST, a potential therapeutic target in glioblastoma. Int J Cancer 144(10):2539–2554. https://doi.org/10.1002/ijc.31985

    Article  PubMed  CAS  Google Scholar 

  12. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105. https://doi.org/10.1016/s0301-0082(00)00067-8

    Article  CAS  PubMed  Google Scholar 

  13. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270. https://doi.org/10.1101/gad.1061803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dontu G, Wicha MS (2005) Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 10(1):75–86. https://doi.org/10.1007/s10911-005-2542-5

    Article  PubMed  Google Scholar 

  15. Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62(20):5657–5663

    PubMed  CAS  Google Scholar 

  16. Erecinska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35(4):245–296. https://doi.org/10.1016/0301-0082(90)90013-7

    Article  PubMed  CAS  Google Scholar 

  17. Hertz L (1979) Functional interactions between neurons and astrocytes I Turnover and metabolism of putative amino acid transmitters. Prog Neurobiol 13(3):277–323. https://doi.org/10.1016/0301-0082(79)90018-2

    Article  PubMed  CAS  Google Scholar 

  18. Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57(4):417–428. https://doi.org/10.1002/(sici)1097-4547(19990815)57:4<417:aid-jnr1>3.3.co;2-e

    Article  PubMed  CAS  Google Scholar 

  19. Huang J, Hu J, Bian X, Chen K, Gong W, Dunlop NM, Howard OM, Wang JM (2007) Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res 67(12):5906–5913. https://doi.org/10.1158/0008-5472.CAN-07-0691

    Article  PubMed  CAS  Google Scholar 

  20. Huang J, Chen K, Chen J, Gong W, Dunlop NM, Howard OMZ, Gao Y, Bian XW, Wang JM (2010) The G-protein-coupled formylpeptide receptor FPR confers a more invasive phenotype on human glioblastoma cells. J Br J Cancer 102(6):1052–1060. https://doi.org/10.1038/sj.bjc.6605591

    Article  CAS  Google Scholar 

  21. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002) Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8(9):971–978. https://doi.org/10.1038/nm746

    Article  PubMed  CAS  Google Scholar 

  22. Jhaveri N, Chen TC, Hofman FM (2016) Tumor vasculature and glioma stem cells: contributions to glioma progression. Cancer Lett 380(2):545–551. https://doi.org/10.1016/j.canlet.2014.12.028

    Article  PubMed  CAS  Google Scholar 

  23. Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng C-Y, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH (2015) miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 29(7):732–745. https://doi.org/10.1101/gad.257394.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Le Y, Hu J, Gong W, Shen W, Li B, Dunlop NM, Halverson DO, Blair DG, Wang JM (2000) Expression of functional formyl peptide receptors by human astrocytoma cell lines. J Neuroimmunol 111(1–2):102–108. https://doi.org/10.1016/s0165-5728(00)00373-8

    Article  PubMed  CAS  Google Scholar 

  25. Li Q, Rycaj K, Chen X, Tang DG (2015) Cancer stem cells and cell size: a causal link? Semin Cancer Biol 35:191–199. https://doi.org/10.1016/j.semcancer.2015.07.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Long PM, Tighe SW, Driscoll HE, Fortner KA, Viapiano MS, Jaworski DM (2015) Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol 230(8):1929–1943. https://doi.org/10.1002/jcp.24927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H (2007) Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 67(19):9463–9471. https://doi.org/10.1158/0008-5472.CAN-07-2034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Man J, Yu X, Huang H, Zhou W, Xiang C, Huang H, Miele L, Liu Z, Bebek G, Bao S, Yu JS (2018) Hypoxic induction of vasorin regulates notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell 22(1):104–118. https://doi.org/10.1016/j.stem.2017.10.005

    Article  PubMed  CAS  Google Scholar 

  29. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195(4284):1356–1358. https://doi.org/10.1126/science.14400

    Article  PubMed  CAS  Google Scholar 

  30. Park H, Ahn S-H, Jung Y, Yoon Joo C, Choi Y-H (2017) Leptin suppresses glutamate-induced apoptosis through regulation of ERK1/2 signaling pathways in rat primary astrocytes. Cell Physiol Biochem 44(6):2117–2128. https://doi.org/10.1159/000485950

    Article  PubMed  CAS  Google Scholar 

  31. Piao Y, Lu L, de Groot J (2009) AMPA receptors promote perivascular glioma invasion via beta1 integrin-dependent adhesion to the extracellular matrix. Neuro Oncol 11(3):260–273. https://doi.org/10.1215/15228517-2008-094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pinilla C, Edwards BS, Appel JR, Yates-Gibbins T, Giulianotti MA, Medina-Franco JL, Young SM, Santos RG, Sklar LA, Houghten RA (2013) Selective agonists and antagonists of formylpeptide receptors: duplex flow cytometry and mixture-based positional scanning libraries. Mol Pharmacol 84(3):314–324. https://doi.org/10.1124/mol.113.086595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ramaswamy P, Aditi Devi N, Hurmath Fathima K, Dalavaikodihalli Nanjaiah N (2014) Activation of NMDA receptor of glutamate influences MMP-2 activity and proliferation of glioma cells. Neurol Sci 35(6):823–829. https://doi.org/10.1007/s10072-013-1604-5

    Article  PubMed  Google Scholar 

  34. Rosati A, Poliani PL, Todeschini A, Cominelli M, Medicina D, Cenzato M, Simoncini EL, Magrini SM, Buglione M, Grisanti S, Padovani A (2013) Glutamine synthetase expression as a valuable marker of epilepsy and longer survival in newly diagnosed glioblastoma multiforme. Neuro Oncol 15(5):618–625. https://doi.org/10.1093/neuonc/nos338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Schonberg DL, Lubelski D, Miller TE, Rich JN (2014) Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Aspects Med 39:82–101. https://doi.org/10.1016/j.mam.2013.06.004

    Article  PubMed  CAS  Google Scholar 

  36. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  37. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7(9):1010–1015. https://doi.org/10.1038/nm0901-1010

    Article  PubMed  CAS  Google Scholar 

  38. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, Miletic H, Sakariassen PO, Weinstock A, Wagner A, Lindsay SL, Hock AK, Barnett SC, Ruppin E, Morkve SH, Lund-Johansen M, Chalmers AJ, Bjerkvig R, Niclou SP, Gottlieb E (2015) Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol 17(12):1556–1568. https://doi.org/10.1038/ncb3272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Vembadi A, Menachery A, Qasaimeh MA (2019) Cell cytometry: review and perspective on biotechnological advances. Front Bioeng Biotechnol 7:147. https://doi.org/10.3389/fbioe.2019.00147

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang G, Zhang L, Chen X, Xue X, Guo Q, Liu M, Zhao J (2016) Formylpeptide receptors promote the migration and differentiation of rat neural stem cells. Sci Rep 6:25946. https://doi.org/10.1038/srep25946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yang CZ, Li HL, Zhou Y, Chai RC, Zhao R, Dong Y, Xu ZY, Lau LT, Yingge Z, Teng J, Chen J, Yu AC (2011) A new specialization in astrocytes: glutamate- and ammonia-induced nuclear size changes. J Neurosci Res 89(12):2041–2051. https://doi.org/10.1002/jnr.22657

    Article  PubMed  CAS  Google Scholar 

  42. Yang C, Lei D, Ouyang W, Ren J, Li H, Hu J, Huang S (2014) Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. Biomed Res Int 2014:109389. https://doi.org/10.1155/2014/109389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yao XH, Ping YF, Chen JH, Xu CP, Chen DL, Zhang R, Wang JM, Bian XW (2008) Glioblastoma stem cells produce vascular endothelial growth factor by activation of a G-protein coupled formylpeptide receptor FPR. J Pathol 215(4):369–376. https://doi.org/10.1002/path.2356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yao XH, Liu Y, Chen K, Gong W, Liu MY, Bian XW, Wang JM (2011) Chemoattractant receptors as pharmacological targets for elimination of glioma stem-like cells. J Int Immunopharmacol 11(12):1961–1966. https://doi.org/10.1016/j.intimp.2011.08.021

    Article  CAS  Google Scholar 

  45. Yao PS, Kang DZ, Lin RY, Ye B, Wang W, Ye ZC (2014) Glutamate/glutamine metabolism coupling between astrocytes and glioma cells: neuroprotection and inhibition of glioma growth. Biochem Biophys Res Commun 450(1):295–299. https://doi.org/10.1016/j.bbrc.2014.05.120

    Article  PubMed  CAS  Google Scholar 

  46. Ye ZC, Oberheim N, Kettenmann H, Ransom BR (2009) Pharmacological "cross-inhibition" of connexin hemichannels and swelling activated anion channels. Glia 57(3):258–269. https://doi.org/10.1002/glia.20754

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59(17):4383–4391

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Yin Y, Sun W, Xiang J, Deng L, Zhang B, Xie P, Qiao W, Zou J, Liu C (2013) Glutamine synthetase functions as a negative growth regulator in glioma. J Neurooncol 114(1):59–69. https://doi.org/10.1007/s11060-013-1168-5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Young and Middle-aged Backbone Key Research Project of National Health and Family Planning Commission of Fujian Province (No. 2017-ZQN-46 to Pei-Sen Yao), National Natural Science Foundation of China (No. 81802492 to Pei-Sen Yao), Natural Science Funding of Fujian Province (No. 2018J01175 to Pei-Sen Yao).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to De-Zhi Kang or Pei-Sen Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of Interest.

Ethical Approval

All procedures performed in studies involving animals (including C57BL/6 pups) were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Approval No. 2017[028]).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Yang, J., Kang, D. et al. Astrocytes Regulate Differentiation and Glutamate Uptake of Glioma Stem Cells via Formyl Peptide Receptor. Cell Mol Neurobiol (2020). https://doi.org/10.1007/s10571-020-00886-3

Download citation

Keywords

  • Glutamate
  • Glutamine
  • Astrocytes
  • Glioma