Adrenaline Facilitates Synaptic Transmission by Synchronizing Release of Acetylcholine Quanta from Motor Nerve Endings

Abstract

The long history of studies on the effect of catecholamines on synaptic transmission does not answer the main question about the mechanism of their action on quantal release in the neuromuscular junction. Currently, interest in catecholamines has increased not only because of their widespread use in the clinic for the treatment of cardiovascular and pulmonary diseases but also because of recent data on their possible use for the treatment of certain neurodegenerative diseases, muscle weakness and amyotrophic sclerosis. Nevertheless, the effects and mechanisms of catecholamines on acetylcholine release remain unclear. We investigated the action of noradrenaline and adrenaline on the spontaneous and evoked quantal secretion of acetylcholine in the neuromuscular junction of the rat soleus muscle. Noradrenaline (10 μM) did not change the spontaneous acetylcholine quantal release, the number of released quanta after nerve stimulation, or the timing of the quantal secretion. However, adrenaline at the same concentration increased spontaneous secretion by 40%, increased evoked acetylcholine quantal release by 62%, and synchronized secretion. These effects differ from those previously described by us in the synapses of the frog cutaneous pectoris muscle and mouse diaphragm. This indicates specificity in catecholamine action that depends on the functional type of muscle and the need to take the targeted type of muscle into account in clinical practice.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abdullahi A, Wang V, Auger C, Patsouris D, Amini-Nik S, Jeschke MG (2019) Catecholamines induce endoplasmic reticulum stress via both alpha and beta receptors. Shock. https://doi.org/10.1097/SHK.0000000000001394

    Article  Google Scholar 

  2. Anderson AJ, Harvey AL (1988) Effects of the facilitatory compounds catechol, guanidine, noradrenaline and phencyclidine on presynaptic currents of mouse motor nerve terminals. Arch Pharmacol 338:133–137

    CAS  Article  Google Scholar 

  3. Barret EE, Stevens CF (1972) The kinetics of transmitter release at the frog neuromuscular junction. J Physiol 227:691–708

    Article  Google Scholar 

  4. Bartus RT, Bétourné A, Basile A, Peterson BL, Glass J, Boulis NM (2016) β2-Adrenoceptor agonists as novel, safe and potentially effective therapies for amyotrophic lateral sclerosis (ALS). Neurobiol Dis 85:11–24. https://doi.org/10.1016/j.nbd.2015.10.006

    CAS  Article  PubMed  Google Scholar 

  5. Bowman WC, Raper C (1962) Adrenaline and slow-contracting skeletal muscles. Nature 6(193):41–43

    Article  Google Scholar 

  6. Bowman WC, Raper C (1967) Adrenotropic receptors in skeletal muscle. Ann N Y Acad Sci 139(3):741–753. https://doi.org/10.1111/j.1749-6632.1967.tb41241.x

    CAS  Article  PubMed  Google Scholar 

  7. Bukcharaeva EA, Kim KC, Moravec J, Nikolsky EE, Vyskocil F (1999) Noradrenaline synchronizes evoked quantal release at frog neuromuscular junctions. J Physiol 517:879–888. https://doi.org/10.1111/j.1469-7793.1999.0879s.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Bukharaeva E, Nikolskii E (2012) Changes in the kinetics of evoked secretion of transmitter quanta—an effective mechanism modulating the synaptic transmission of excitation. Neurosci Behav Physiol 42:153–160

    CAS  Article  Google Scholar 

  9. Bukharaeva EA, Samigullin D, Nikolsky EE, Magazanik LG (2007) Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. J Neurochem 100:939–949. https://doi.org/10.1111/j.1471-4159.2006.04282.x

    CAS  Article  PubMed  Google Scholar 

  10. Burke G, Hiscock A, Klein A, Niks EH, Main M, Manzur AY, Ng J, De-Vile C et al (2013) Salbutamol benefits children with congenital myasthenic syndrome due to DOK7 mutations. Neuromuscul Disord 23:170–175. https://doi.org/10.1016/j.nmd.2012.11.004

    Article  PubMed  Google Scholar 

  11. Bylund DB (2007) Alpha- and beta-adrenergic receptors: Ahlquist's landmark hypothesis of a single mediator with two receptors. Am J Physiol Endocrinol Metab 293(6):1479–1481. https://doi.org/10.1152/ajpendo.00664.2007

    CAS  Article  Google Scholar 

  12. Cairns S, Borrani F (2015) β-Adrenergic modulation of skeletal muscle contraction: key role of excitation—contraction coupling. J Physiol 593:4713–4727. https://doi.org/10.1113/JP270909

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Cairns SP, Dulhunty AF (1993) The effects of beta-adrenoceptor activation on contraction in isolated fast- and slow-twitch skeletal muscle fibres of the rat. Br J Pharmacol 110(3):1133–1141. https://doi.org/10.1111/j.1476-5381.1993.tb13932.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Decorte N, Lamalle L, Carlier PG, Giacomini E, Guinot M, Levy P, Verges S, Wuyam B (2015) Impact of salbutamol on muscle metabolism assessed by 31P NMR spectroscopy. Scand J Med Sci Sports 25:e267–e273. https://doi.org/10.1111/sms.12312

    CAS  Article  PubMed  Google Scholar 

  15. Engel AG, Shen XM, Selcen D, Sine SM (2015) Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14:420–434. https://doi.org/10.1016/S1474-4422(14)70201-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ghazanfari N, Morsch M, Tse N, Reddel SW, Phillips WD (2014) Effects of the ß2-adrenoceptor agonist, albuterol, in a mouse model of anti-MuSK Myasthenia Gravis. PLoS ONE 9(2):e87840. https://doi.org/10.1371/journal.pone.0087840

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Ginsborg BL, Hirst GD (1971) Prostaglandin E1 and noradrenaline at the neuromuscular junction. Br J Pharmacol 42(1):153–154

    CAS  Article  Google Scholar 

  18. Huang CH, Moser T (2018) Ca2+ regulates the kinetics of synaptic vesicle fusion at the afferent inner hair cell synapse. Front Cell Neurosci 12:364. https://doi.org/10.3389/fncel.2018.00364

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Joassard OR, Durieux AC, Freyssenet DG (2013) β2-Adrenergic agonists and the treatment of skeletal muscle wasting disorders. Int J Biochem Cell Biol 45(10):2309–2321. https://doi.org/10.1016/j.biocel.2013.06.025

    CAS  Article  PubMed  Google Scholar 

  20. Juel C (1988) The effect of β2-adrenoceptor activation on ion-shifts and fatigue in mouse soleus muscles stimulated in vitro. Acta Physiol Scand 134:209–216. https://doi.org/10.1111/j.1748-1716.1988.tb08481.x

    CAS  Article  PubMed  Google Scholar 

  21. Kaeser PS, Regehr WG (2014) Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol 76:333–363. https://doi.org/10.1146/annurev-physiol-021113-170338

    CAS  Article  PubMed  Google Scholar 

  22. Katz B, Miledi R (1965) The measurement of synaptic delay, and the time course of ACh release at the neuromuscular junction. Proc R Soc Lond B 161:483–495. https://doi.org/10.1098/rspb.1965.0016

    CAS  Article  PubMed  Google Scholar 

  23. Khan MM, Lustrino D, Silveira WA, Wild F, Straka T, Issop Y, O'Connor E, Cox D et al (2016) Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proc Natl Acad Sci USA 113:746–750. https://doi.org/10.1073/pnas.1524272113

    CAS  Article  PubMed  Google Scholar 

  24. Krnjevic K, Miledi R (1958) Some effects produced by adrenaline upon neuromuscular propagation in rats. J Physiol 141(2):291–304. https://doi.org/10.1038/193041a0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Kuba K (1970) Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J Physiol 211(3):551–570. https://doi.org/10.1113/jphysiol.1970.sp009293

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Kuba K, Tomita T (1971) Effects of noradrenaline on miniature end-plate potentials and on end-plate potential. J Theor Biol 36:81–88. https://doi.org/10.1113/jphysiol.1971.sp009557

    Article  Google Scholar 

  27. Legay C (2018) Congenital myasthenic syndromes with acetylcholinesterase deficiency, the pathophysiological mechanisms. Ann N Y Acad Sci 1413(1):104–110. https://doi.org/10.1111/nyas.13595

    CAS  Article  PubMed  Google Scholar 

  28. Lin J-W, Faber S (2002) Modulation of synaptic delay during synaptic plasticity. Trends Neurosci 25:449–455

    CAS  Article  Google Scholar 

  29. Misra H, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    CAS  PubMed  Google Scholar 

  30. Oliver G, Schäfer EA (1895) The physiological effects of extracts of the suprarenal capsules. J Physiol 18(3):230–276

    CAS  Article  Google Scholar 

  31. Palop G, Romero AM, Calatayud JM (2002) Oxidation of adrenaline and noradrenaline by solved molecular oxygen in a FIA assembly. J Pharmaceut Biomed 27(6):1017–1025. https://doi.org/10.1016/S0731-7085(01)00610-0

    CAS  Article  Google Scholar 

  32. Rodrigues A, Messi M, Wang Z-M, Abba M, Pereyra A, Birbrair A, Zhang T, O’Meara M et al (2019a) The sympathetic nervous system regulates skeletal muscle motor innervation and ACh receptor stability. Acta Physiol 225:e13195. https://doi.org/10.1111/apha.13195

    CAS  Article  Google Scholar 

  33. Rodrigues A, Wang Z-M, Messi M, Delbono O (2019b) Sympathomimetics regulate neuromuscular junction transmission through TRPV1, P/Q- and N-type Ca2+ channels. Mol and Cell Neurosci 95:59–70

    CAS  Article  Google Scholar 

  34. Rudolf R, Khan MM, Lustrino D, Labeit S, Kettelhut IC, Navegantes LC (2013) Alterations of cAMP dependent signaling in dystrophic skeletal muscle. Front Physiol 4:290. https://doi.org/10.3389/fphys.2013.00290

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406(6798):889–893

    CAS  Article  Google Scholar 

  36. Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15(3):266–274

    CAS  Article  Google Scholar 

  37. Soić-Vranić T, Bobinac D, Bajek S, Jerković R, Malnar-Dragojević D, Nikolić M (2005) Effect of salbutamol on innervated and denervated rat soleus muscle. Braz J Med Biol Res 38(12):1799–1805. https://doi.org/10.1590/S0100-879X2005001200008

    Article  PubMed  Google Scholar 

  38. Straka T, Vita V, Prokshi K, Hörner SJ, Khan MM, Pirazzini M, Williams MPI, Hafner M et al (2018) Postnatal development and distribution of sympathetic innervation in mouse skeletal muscle. Int J Mol Sci 19(7):1935. https://doi.org/10.3390/ijms19071935

    CAS  Article  PubMed Central  Google Scholar 

  39. Tsentsevitsky AN, Kovyazina IV, Bukharaeva EA, Nikolsky EE (2018) Effect of noradrenaline on the kinetics of evoked acetylcholine secretion in mouse neuromuscular junction. Biochemistry A 12:327–332. https://doi.org/10.1134/S1990747818070012

    Article  Google Scholar 

  40. Tsentsevitsky AN, Khuzakhmetova VF, Bukharaeva EA (2019a) Adrenergic modulation of excitation propagation in peripheral synapses. Biochemistry A 13(3):187–193. https://doi.org/10.1134/S1990747819030097

    Article  Google Scholar 

  41. Tsentsevitsky AN, Kovyazina IV, Bukharaeva EA (2019b) Diverse effects of noradrenaline and adrenaline on the quantal secretion of acetylcholine at the mouse neuromuscular junction. Neuroscience 423:162–171. https://doi.org/10.1016/j.neuroscience.2019.10.049

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 18-15-00046). The investigation of the catecholamine’s autoxidation was supported by government assignment for FRC Kazan Scientific Center of RAS. We are grateful to Svetlana Dmitrieva for her help in doing the catecholamine’s autoxidation analysis.

Author information

Affiliations

Authors

Contributions

VK and EB contributed equally to the manuscript.

Corresponding author

Correspondence to Venera Khuzakhmetova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study conformed to the Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1996) and the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other (Int. J. Mol. Sci. 2019, 20, 4860 10 of 17) Scientific Purposes (Council of Europe No. 123, Strasbourg, 1985). The experimental protocol met the requirements of the EU Directive 2010/63/EU and was approved by the Bioethics Committees of Kazan State Medical University (Protocol #3/ 29 Jan 2016).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khuzakhmetova, V., Bukharaeva, E. Adrenaline Facilitates Synaptic Transmission by Synchronizing Release of Acetylcholine Quanta from Motor Nerve Endings. Cell Mol Neurobiol (2020). https://doi.org/10.1007/s10571-020-00840-3

Download citation

Keywords

  • Neuromuscular junction
  • Quantal acetylcholine release
  • Catecholamine
  • Timing of the evoked quantal secretion