Histamine H3 Receptors Expressed in Ventral Horns Modulate Spinal Motor Output

Abstract

Motoneuron activity is modulated by histamine receptors. While H1 and H2 receptors have been widely explored, H3 histamine receptors (H3Rs) have not been sufficiently characterized. This paper targets the effects of the selective activation of H3Rs and their expression on the membranes of large ventral horn cells. The application of selective pharmacological agents to spinal cords isolated from neonatal rats was used to identify the presence of functional H3Rs on the membrane of physiologically identified lumbar motoneurons. Intra and extracellular recordings revealed that H3R agonist, α-methylhistamine, depolarized both single motoneurons and ventral roots, even in the presence of tetrodotoxin, an effect prevented by H3R antagonist, thioperamide. Finally, immunohistochemistry located the expression of H3Rs on a subpopulation of large cells in lamina IX. This study identifies H3Rs as a new exploitable pharmacological target against motor disturbances.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Abbreviations

CV:

Cresyl violet

DRG:

Dorsal root ganglion

H3Rs:

H3 histamine receptors

P:

Postnatal

VR:

Ventral root

References

  1. Arrang JM, Morisset S, Gbahou F (2007) Constitutive activity of the histamine H3 receptor. Trends Pharmacol Sci 28:350–357

    CAS  Article  Google Scholar 

  2. Brown RE, Reymann KG (1996) Histamine H3 receptor-mediated depression of synaptic transmission in the dentate gyrus of the rat in vitro. J Physiol 496:175–184

    CAS  Article  Google Scholar 

  3. Brumley MR, Guertin PA, Taccola G (2017) Multilevel analysis of locomotion in immature preparations suggests innovative strategies to reactivate stepping after spinal cord injury. Curr Pharm Des 23:1764–1777

    CAS  Article  Google Scholar 

  4. Cannon KE, Nalwalk JW, Stadel R, Ge P, Lawson D, Silos-Santiago I, Hough LB (2003) Activation of spinal histamine H3 receptors inhibits mechanical nociception. Eur J Pharmacol 470:139–147

    CAS  Article  Google Scholar 

  5. Cannon KE, Chazot PL, Hann V, Shenton F, Hough LB, Rice FL (2007) Immunohistochemical localization of histamine H3 receptors in rodent skin, dorsal root ganglia, superior cervical ganglia, and spinal cord: potential antinociceptive targets. Pain 129:76–92

    CAS  Article  Google Scholar 

  6. Chiavegatto S, Nasello AG, Bernardi MM (1998) Histamine and spontaneous motor activity: biphasic changes, receptors involved and participation of the striatal dopamine system. Life Sci 62:1875–1888

    CAS  Article  Google Scholar 

  7. Constanti A, Nistri A (1976) Antagonism by some antihistamines of the amino acid-evoked responses recorded from the lobster muscle fibre and the frog spinal cord. Br J Pharmacol 58:583–592

    CAS  Article  Google Scholar 

  8. Coslovich T, Brumley MR, D'Angelo G, Della Mora A, Swann HE, Ortolani F, Taccola G (2018) Histamine modulates spinal motoneurons and locomotor circuits. J Neurosci Res 96:889–900

    CAS  Article  Google Scholar 

  9. Cowart M, Hsieh G, Black LA, Zhan C, Gomez EJ, Pai M, Strakhova M, Manelli A, Carr T, Wetter J, Lee A, Diaz G, Garrison T, Brioni JD (2012) Pharmaological characterization of A-960656, a histamine H3 receptor antagonist with efficacy in animal models of osteoarthritis and neuropathic pain. Eur J Pharmacol 684:87–94

    CAS  Article  Google Scholar 

  10. Cricco GP, Mohamad NA, Sambuco LA, Genre F, Croci M, Gutiérrez AS, Medina VA, Bergoc RM, Rivera ES, Martín GA (2008) Histamine regulates pancreatic carcinoma cell growth through H3 and H4 receptors. Inflamm Res 57:S23–45

    CAS  Article  Google Scholar 

  11. Dai H, Zhang Z, Zhu Y, Shen Y, Hu W, Huang Y, Luo J, Timmerman H, Leurs R, Chen Z (2006) Histamine protects against NMDA-induced necrosis in cultured cortical neurons through H receptor/cyclic AMP/protein kinase A and H receptor/GABA release pathways. J Neurochem 96:1390–1400

    CAS  Article  Google Scholar 

  12. Dose F, Zanon P, Coslovich T, Taccola G (2014) Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CpG of the rat spinal cord in vitro. PLoS ONE 9(3):e92967

    Article  Google Scholar 

  13. Dose F, Deumens R, Forget P, Taccola G (2016) Staggered multi-site low-frequency electrostimulation effectively induces locomotor patterns in the isolated rat spinal cord. Spinal Cord 54:93–101

    CAS  Article  Google Scholar 

  14. Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–11241

    CAS  Article  Google Scholar 

  15. Harasawa K (2000) Does the histaminergic system play a role in spinal nociception? Hokkaido Igaku Zasshi 75:275–281

    CAS  PubMed  Google Scholar 

  16. Hough LB, Rice FL (2011) H3 receptors and pain modulation: peripheral, spinal, and brain interactions. J Pharmacol Exp Ther 336:30–37

    CAS  Article  Google Scholar 

  17. Hsieh GC, Honore P, Pai M, Wensink EJ, Chandran P, Salyers AK, Wetter JM, Zhao C, Liu H, Decker MW, Esbenshade TA, Cowart MD, Brioni JD (2010) Antinociceptive effects of histamine H3 receptor antagonist in the preclinical models of pain in rats and the involvement of central noradrenergic systems. Brain Res 1354:74–84

    CAS  Article  Google Scholar 

  18. Inagaki N, Yamatodani A, Ando-Yamamoto M, Tohyama M, Watanabe T, Wada H (1988) Organization of histaminergic fibers in the rat brain. J Comp Neurol 273:283–300

    CAS  Article  Google Scholar 

  19. Kukko-Lukjanov TK, Soini S, Taira T, Michelsen KA, Panula P, Holopainen IE (2006) Histaminergic neurons protect the developing hippocampus from kainic acid-induced neuronal damage in an organotypic coculture system. J Neurosci 26:1088–1097

    CAS  Article  Google Scholar 

  20. Lee JS, Han JS, Lee K, Bang J, Lee H (2016) The peripheral and central mechanisms underlying itch. BMB Rep 49:474–487

    CAS  Article  Google Scholar 

  21. Luo J, Feng J, Liu S, Walters ET, Hu H (2015) Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci 72:3587–3588

    CAS  Article  Google Scholar 

  22. Murakami H, Sun-Wada GH, Matsumoto M, Wada Y, Futai M (1999) Human histamine H2 receptor gene: multiple transcription initiation and tissue-specific expression. FEBS Lett 451:327–331

    CAS  Article  Google Scholar 

  23. Murakoshi T, Suzue T, Tamai S (1985) A pharamacological study on the respiratory rhythm in the isolated brainstem-spinal cord preparation of the newborn rat. Br J Pharmacol 86:95–104

    CAS  Article  Google Scholar 

  24. Passani MB, Blandina P (2011) Histamine receptors in the CNS as targets for therapeutic intervention. Trend Pharmacol Sci 32:242–249

    CAS  Article  Google Scholar 

  25. Saito T, Tagami H, Kamei C, Tasaka K (1984) Excitatory and inhibitory effects of H1-blockers on isolated bullfrog spinal cords. Arch Int Pharmacodyn Ther 271:127–134

    CAS  PubMed  Google Scholar 

  26. Seybold VS (1985) Distribution of histaminergic, muscarinic and serotonergic binding sites in cat spinal cord with emphasis on the region surrounding the central canal. Brain Res 342:291–296

    CAS  Article  Google Scholar 

  27. Strakhova MI, Nikkel AL, Manelli AM, Hsieh GC, Esbenshade TA, Brioni BRS (2009) Localization of histamine H4 receptors in the central nervous system of human and rat. Brain Res 1250:41–48

    CAS  Article  Google Scholar 

  28. Taccola G, Nistri A (2005) Characteristics of the electrical oscillations evoked by 4-aminopyridine on dorsal root fibers and their relation to fictive locomotor patterns in the rat spinal cord in vitro. Neuroscience 132:1187–1197

    CAS  Article  Google Scholar 

  29. Takei H, Song L, Ebihara K, Shirakawa T, Koshikawa N, Kobayashi M (2012) Histaminergic effects on the frequency of repetitive spike firing in rat insular cortex. Neurosci Lett 518:55–59

    CAS  Article  Google Scholar 

  30. Takei H, Yamamoto K, Bae YC, Shirakawa T, Kobayashi M (2017) Histamine H3 heteroreceptors suppress glutamatergic and gabaergic synaptic transmission in the rat insular cortex. Front Neural Circuits 11:85

    Article  Google Scholar 

  31. Taylor JE, Yaksh TL, Richelson E (1982) Histamine H1 receptors in the brain and spinal cord of the cat. Brain Res 243:391–394

    CAS  Article  Google Scholar 

  32. Toyota H, Dugovic C, Koehl M, Laposky AD, Weber C, Ngo K, Wu Y, Lee DH, Yanai K, Sakurai E, Watanabe T, Liu C, Chen J, Barbier AJ, Turek FW, Fung-Leung WP, Lovenberg TW (2002) Behavioral characterization of mice lacking histamine H(3) receptors. Mol Pharmacol 62:389–397

    CAS  Article  Google Scholar 

  33. van Neerven SG, Pannaye P, Bozkurt A, Van Nieuwenhoven F, Joosten E, Hermans E, Taccola G, Deumens R (2013) Schwann cell migration and neurite outgrowth are influenced by media conditioned by epineurial fibroblasts. Neuroscience 252:144–153

    Article  Google Scholar 

  34. Wei H, Vilasanen H, You HJ, Pertovaara A (2016) Spinal histamine in attenuation of mechanical hypersensitivity in the spinal nerve ligation-induced model of experimental neuropathy. Eur J Pharmacol 772:162–171

    Article  Google Scholar 

  35. Wu GY, Han XH, Zhuang J, Yung WH, Chan YS, Zhu JN, Wang JJ (2012) Excitatory effect of histamine on rat spinal motoneurons by activation of both H1 and H2 receptors in vitro. J Neurosci Res 90:132–142

    CAS  Article  Google Scholar 

  36. Zhao Y-Y, Yuan Y, Chen Y, Jiang L, Liao R-J, Wang L, Zhang X-N, Ohtsu H, Hu W-W, Chen Z (2015) Histamine promotes locomotion recovery after spinal cord hemisection via inhibiting astrocytic scar formation. CNS Neurosci Ther 21:454–462

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Ms. Elvita Titolo and Mr Walter Zangrando for their generous support. We are grateful to Elisa Ius for the excellent assistance in preparing the manuscript.

Author information

Affiliations

Authors

Contributions

All authors had full access to the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Conceptualization, GT; Methodology, GT; Investigation, TC, GD’A, ADM and GT; Formal Analysis, TC, G.D’A., A.DM. and GT; Writing—Original Draft, TC, GD’A, ADM and GT; Writing—Review & Editing, ADM and GT; Visualization, GD’A, ADdM and GT; Supervision, FO and GT; Funding Acquisition, GT.

Corresponding author

Correspondence to Giuliano Taccola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Procedures were approved by the International School for Advanced Studies (SISSA) ethics committee and are in accordance with the guidelines of the Italian Animal Welfare Act 24/3/2014 n. 26 implementing the European Union directive on animal experimentation (2010/63/EU). All procedures performed in studies involving animals were in accordance with the ethical standards of the SISSA Laboratory Animal Center and the protocol was approved by the local Animal Committee (Organismo preposto al benessere degli animali, OPBA) of SISSA, Italy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coslovich, T., Della Mora, A., D’Angelo, G. et al. Histamine H3 Receptors Expressed in Ventral Horns Modulate Spinal Motor Output. Cell Mol Neurobiol (2020). https://doi.org/10.1007/s10571-020-00831-4

Download citation

Keywords

  • Motoneurons
  • Motor pools
  • Motor reflexes
  • Spontaneous activity