Interleukin-13 Gene Modification Enhances Grafted Mesenchymal Stem Cells Survival After Subretinal Transplantation


Mesenchymal stem cells (MSCs) hold great potential for cell- and gene-based therapies for retinal degeneration. Limited survival is the main obstacle in achieving successful subretinal transplantation of MSCs. The present study sought to evaluate the effect of interleukin-13 (IL-13) gene modification on the phenotypic alteration of retinal microglia (RMG) and the survival of MSCs following subretinal grafting. In this study, LPS-activated RMG were cocultured with MSCs or IL-13-expressing MSCs (IL-13-MSCs) for 24 h, and activated phenotypes were detected in vitro. Western blotting was performed to quantify cytokine secretion by light-injured retinas following subretinal transplantation. The numbers of activated RMG and surviving grafted cells were analysed, and the integrity of the blood–retinal barrier (BRB) was examined in vivo. We found that, compared with normal MSCs, cocultured IL-13-MSCs suppressed the expression of pro-inflammatory factors and major histocompatibility complex II, promoted the expression of anti-inflammatory cytokines by activated RMG and simultaneously inhibited the proliferation of and phagocytosis by RMG. The subretinal transplantation of IL-13-MSCs increased the expression of neurotrophic factors, IL-13 and tight junction proteins in the host retina, decreased the number of phagocytic RMG and improved the survival of grafted cells. Furthermore, IL-13-MSCs alleviated BRB breakdown induced by subretinal injection. Our results demonstrate that IL-13-MSCs can polarize activated RMG to the neuroprotective M2 phenotype and enhance the survival of grafted MSCs against the damage stress induced by subretinal transplantation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Mesenchymal stem cells


Major histocompatibility complex


Blood–retinal barrier


Retinal microglia




Interleukin-13 gene-modified mesenchymal stem cells






Retinal pigment epithelium


Tumour necrosis factor-α






Ciliary neurotrophic factor


Glial cell-derived neurotrophic factor


Zonula occludens-1


Scanning electron microscopy


  1. Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, Wang CY (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19:35–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Damoiseaux JG, Döpp EA, Calame W, Chao D, MacPherson GG, Dijkstra CD (1994) Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody ED1. Immunology 83:140–147

    PubMed  PubMed Central  CAS  Google Scholar 

  3. De Vocht N et al (2013) Quantitative and phenotypic analysis of mesenchymal stromal cell graft survival and recognition by microglia and astrocytes in mouse brain. Immunobiology 218:696–705.

    Article  PubMed  CAS  Google Scholar 

  4. Ding X, Zhang M, Gu R, Xu G, Wu H (2017) Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes. Graefes Arch Clin Exp Ophthalmol 255:777–788.

    Article  PubMed  CAS  Google Scholar 

  5. Dooley D, Lemmens E, Vangansewinkel T, Le BD, Hoornaert C, Ponsaerts P, Hendrix S (2016) Cell-based delivery of interleukin-13 directs alternative activation of macrophages resulting in improved functional outcome after spinal cord injury. Stem Cell Rep 7:1099–1115.

    Article  CAS  Google Scholar 

  6. Hamzei TS et al (2018) Targeted intracerebral delivery of the anti-inflammatory cytokine IL13 promotes alternative activation of both microglia and macrophages after stroke. J Neuroinflamm 15:174.

    Article  CAS  Google Scholar 

  7. Harhaj NS, Felinski EA, Wolpert EB, Sundstrom JM, Gardner TW, Antonetti DA (2006) VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci 47:5106–5115.

    Article  PubMed  Google Scholar 

  8. Herberg S, Shi X, Johnson MH, Hamrick MW, Isales CM, Hill WD (2013) Stromal cell-derived factor-1beta mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS ONE 8:e58207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hoornaert CJ et al (2016) In vivo interleukin-13-primed macrophages contribute to reduced alloantigen-specific T cell activation and prolong immunological survival of allogeneic mesenchymal stem cell implants. Stem Cells 34:1971–1984.

    Article  PubMed  CAS  Google Scholar 

  10. Huang L, Xu W, Xu G (2013) Transplantation of CX3CL1-expressing mesenchymal stem cells provides neuroprotective and immunomodulatory effects in a rat model of retinal degeneration. Ocul Immunol Inflamm 21:276–285.

    Article  PubMed  CAS  Google Scholar 

  11. Huang L, Xu G, Guo J, Xie M, Chen L, Xu W (2016) Mesenchymal stem cells modulate light-induced activation of retinal microglia through CX3CL1/CX3CR1 signaling. Ocul Immunol Inflamm 24:684–692.

    Article  PubMed  CAS  Google Scholar 

  12. Joe AW, Gregory-Evans K (2010) Mesenchymal stem cells and potential applications in treating ocular disease. Curr Eye Res 35:941–952

    Article  PubMed  Google Scholar 

  13. Karlstetter M, Ebert S, Langmann T (2010) Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiology 215:685–691.

    Article  PubMed  CAS  Google Scholar 

  14. Langmann T (2007) Microglia activation in retinal degeneration. J Leukoc Biol 81:1345–1351

    Article  CAS  PubMed  Google Scholar 

  15. Le BD et al (2016) Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model. J Neuroinflamm 13:288.

    Article  CAS  Google Scholar 

  16. Li J et al (2012) Plumbagin inhibits cell growth and potentiates apoptosis in human gastric cancer cells in vitro through the NF-κB signaling pathway. Acta Pharmacol Sin 33:242–249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lu B, Wang S, Girman S, McGill T, Ragaglia V, Lund R (2010) Human adult bone marrow-derived somatic cells rescue vision in a rodent model of retinal degeneration. Exp Eye Res 91:449–455.

    Article  PubMed  CAS  Google Scholar 

  18. Mehrabadi AR, Korolainen MA, Odero G, Miller DW, Kauppinen TM (2017) Poly(ADP-ribose) polymerase-1 regulates microglia mediated decrease of endothelial tight junction integrity. Neurochem Int 108:266–271.

    Article  PubMed  CAS  Google Scholar 

  19. Mori S, Maher P, Conti B (2016) Neuroimmunology of the Interleukins 13 and 4. Brain Sci.

    Article  PubMed  PubMed Central  Google Scholar 

  20. O’Keefe GM, Nguyen VT, Benveniste EN (1999) Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-beta, IL-4, IL-13 and IL-10. Eur J Immunol 29:1275–1285.;2-T

    Article  PubMed  Google Scholar 

  21. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–665.

    Article  PubMed  CAS  Google Scholar 

  22. Park SS et al (2017) Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res 56:148–165.

    Article  PubMed  CAS  Google Scholar 

  23. Sanagi T et al (2010) Appearance of phagocytic microglia adjacent to motoneurons in spinal cord tissue from a presymptomatic transgenic rat model of amyotrophic lateral sclerosis. J Neurosci Res 88:2736–2746.

    Article  PubMed  CAS  Google Scholar 

  24. Schafer S, Calas AG, Vergouts M, Hermans E (2012) Immunomodulatory influence of bone marrow-derived mesenchymal stem cells on neuroinflammation in astrocyte cultures. J Neuroimmunol 249:40–48.

    Article  PubMed  CAS  Google Scholar 

  25. Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Singhal S et al (2008) Chondroitin sulfate proteoglycans and microglia prevent migration and integration of grafted Müller stem cells into degenerating retina. Stem Cells 26:1074–1082.

    Article  PubMed  Google Scholar 

  27. Stanzel BV et al (2014) Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep 2:64–77.

    Article  CAS  Google Scholar 

  28. Sumi N et al (2010) Lipopolysaccharide-activated microglia induce dysfunction of the blood-brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol 30:247–253.

    Article  PubMed  CAS  Google Scholar 

  29. Tzameret A et al (2014) Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res 118:135–144.

    Article  PubMed  CAS  Google Scholar 

  30. Wang S et al (2010) Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS ONE 5:e9200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang Y, Chen X, Cao W, Shi Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15:1009–1016.

    Article  PubMed  CAS  Google Scholar 

  32. Xian B, Huang B (2015) The immune response of stem cells in subretinal transplantation. Stem Cell Res Ther 6:161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xu Q, Qaum T, Adamis AP (2001) Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest Ophthalmol Vis Sci 42:789–794

    PubMed  CAS  Google Scholar 

  34. Yang F, Wang D, Wu L, Li Y (2015) Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma. Drug Des Dev Ther 9:6095–6107.

    Article  CAS  Google Scholar 

  35. Zhang L, Liu H, Peng YM, Dai YY, Liu FY (2015) Vascular endothelial growth factor increases GEnC permeability by affecting the distributions of occludin, ZO-1 and tight juction assembly. Eur Rev Med Pharmacol Sci 19:2621–2627

    PubMed  CAS  Google Scholar 

Download references


This study was supported by grants from Startup Fund for scientific research of Fujian Medical University (Grant Number: 2016QH041), and Fund for Young and Middle-aged University Teachers’ educational research of Fujian Province (Grant Number: JT180188).

Author information




HL performed and analysed majority of all experiments, including cell coculture and subretinal transplantation. XM and YJ participated in most of the experiments. HL and YY conceived and designed the experiments. The manuscript was written by HL, XM and YJ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maosong Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

All animal procedures were approved by the Animal Care and Use Committee of the First Affiliated Hospital of Fujian Medical University (no.2016-YK-163) and conformed to the Association for Research in Vision and Ophthalmology (ARVO) Statement on the Use of Animals in Ophthalmic and Vision Research. All efforts were resorted to minimize the number of rats used and their suffering.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 599 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, L., You, J., Yao, Y. et al. Interleukin-13 Gene Modification Enhances Grafted Mesenchymal Stem Cells Survival After Subretinal Transplantation. Cell Mol Neurobiol 40, 725–735 (2020).

Download citation


  • Mesenchymal stem cell
  • Microglia
  • Graft survival
  • Interleukin-13
  • Subretinal transplantation
  • Blood–retinal barrier