Inflammatory Pathways Following Subarachnoid Hemorrhage

Abstract

Aneurysmal subarachnoid hemorrhage (SAH) is an acute cerebrovascular emergency resulting from the rupture of a brain aneurysm. Despite only accounting for 5% of all strokes, SAH imposes a significant health burden on society due to its relatively young age at onset. Those who survive the initial bleed are often afflicted with severe disabilities thought to result from delayed cerebral ischemia (DCI). Consequently, elucidating the underlying mechanistic pathways implicated in DCI development following SAH remains a priority. Neuroinflammation has recently been implicated as a promising new theory for the development of SAH complications. However, despite this interest, clinical trials have failed to provide consistent evidence for the use of anti-inflammatory agents in SAH patients. This may be explained by the complexity of SAH as a plethora of inflammatory pathways have been shown to be activated in the disease. By determining how these pathways may overlap and interact, we hope to better understand the developmental processes of SAH complications and how to prevent them. The goal of this review is to provide insight into the available evidence regarding the molecular pathways involved in the development of inflammation following SAH and how SAH complications may arise as a result of these inflammatory pathways.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Abais JM, Xia M, Zhang Y, Boini KM, Li PL (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22:1111–1129. https://doi.org/10.1089/ars.2014.5994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Abe Y, Kasuya H, Suzuki S, Yamanishi Y, Hori T (2002) Effect of a platelet-activating factor antagonist, E5880, on cerebrovasospasm following subarachnoid hemorrhage in a canine double-hemorrhage model. Eur J Pharmacol 455:127–133

    PubMed  Article  CAS  Google Scholar 

  3. Ansar S, Edvinsson L (2008) Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage. Stroke 39:185–190. https://doi.org/10.1161/strokeaha.107.487827

    Article  PubMed  CAS  Google Scholar 

  4. Ansar S, Edvinsson L (2009) Equal contribution of increased intracranial pressure and subarachnoid blood to cerebral blood flow reduction and receptor upregulation after subarachnoid hemorrhage. Lab Invest J Neurosurg 111:978–987. https://doi.org/10.3171/2007.3.16738

    Article  Google Scholar 

  5. Ansar S, Vikman P, Nielsen M, Edvinsson L (2007) Cerebrovascular ETB, 5-HT1B, and AT1 receptor upregulation correlates with reduction in regional CBF after subarachnoid hemorrhage. Am J Physiol 293:3750

    Google Scholar 

  6. Arthur AS, Fergus AH, Lanzino G, Mathys J, Kassell NF, Lee KS (1997) Systemic administration of the iron chelator deferiprone attenuates subarachnoid hemorrhage-induced cerebral vasospasm in the rabbit. Neurosurgery 41:1385–1391

    PubMed  Article  CAS  Google Scholar 

  7. Asano T et al (1996) Effects of a hydroxyl radical scavenger on delayed ischemic neurological deficits following aneurysmal subarachnoid hemorrhage: results of a multicenter, placebo-controlled double-blind trial. J Neurosurg 84:792–803. https://doi.org/10.3171/jns.1996.84.5.0792

    Article  PubMed  CAS  Google Scholar 

  8. Asleh R et al (2003) Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ Res 92:1193–1200. https://doi.org/10.1161/01.res.0000076889.23082.f1

    Article  PubMed  CAS  Google Scholar 

  9. Asleh R, Guetta J, Kalet-Litman S, Miller-Lotan R, Levy AP (2005) Haptoglobin genotype- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo. Circ Res 96:435–441. https://doi.org/10.1161/01.RES.0000156653.05853.b9

    Article  PubMed  CAS  Google Scholar 

  10. Ayer RE, Zhang JH (2008) Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl 104:33–41. https://doi.org/10.1007/978-3-211-75718-5_7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Balboa MA, Balsinde J (2006) Oxidative stress and arachidonic acid mobilization. Biochim Biophys Acta 1761:385–391. https://doi.org/10.1016/j.bbalip.2006.03.014

    Article  PubMed  CAS  Google Scholar 

  12. Bayar MA et al (2003) The effect of EGb-761 on morphologic vasospasm in canine basilar artery after subarachnoid hemorrhage. J Cardiovasc Pharmacol 42:395–402

    PubMed  Article  CAS  Google Scholar 

  13. Bederson JB et al (2009) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council. Am Heart Assoc Stroke 40:994–1025. https://doi.org/10.1161/strokeaha.108.191395

    Article  Google Scholar 

  14. Beg SS, Hansen-Schwartz JA, Vikman PJ, Xu C-B, Edvinsson LI (2007) Protein kinase C inhibition prevents upregulation of vascular ET(B) and 5-HT(1B) receptors and reverses cerebral blood flow reduction after subarachnoid haemorrhage in rats. J Cereb Blood Flow Metab 27:21–32

    PubMed  Article  CAS  Google Scholar 

  15. Boisvert DP, Weir BK, Overton TR, Reiffenstein R, Grace MG (1977) Cerebrovascular responses to subarachnoid blood and serotonin in the monkey. Acta Neurol Scand Suppl 64:322–323

    PubMed  CAS  Google Scholar 

  16. Borsody M, Burke A, Coplin W, Miller-Lotan R, Levy A (2006) Haptoglobin and the development of cerebral artery vasospasm after subarachnoid hemorrhage. Neurology 66:634–640. https://doi.org/10.1212/01.wnl.0000200781.62172.1d

    Article  PubMed  CAS  Google Scholar 

  17. Boullin DJ, Du Boulay GH, Rogers AT (1978) Aetiology of cerebral arterial spasm following subarachnoid haemorrhage: evidence against a major involvement of 5-hydroxy-tryptamine in the production of acute spasm. Br J Clin Pharmacol 6:203–215

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Brandt L, Ljunggren B, Andersson KE, Hindfelt B, Uski T (1981) Effects of indomethacin and prostacyclin on isolated human pial arteries contracted by CSF from patients with aneurysmal SAH. J Neurosurg 55:877–883

    PubMed  Article  CAS  Google Scholar 

  19. Brandt L, Ljunggren B, Andersson KE, Hindfelt B, Uski T (1983) Prostaglandin metabolism and prostacyclin in cerebral vasospasm. Gen Pharmacol 14:141–143

    PubMed  Article  CAS  Google Scholar 

  20. Cai J et al (2017) Curcumin mitigates cerebral vasospasm and early brain injury following subarachnoid hemorrhage via inhibiting cerebral inflammation. Brain Behav 7:e00790. https://doi.org/10.1002/brb3.790

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cambj-Sapunar L, Yu M, Harder DR, Roman RJ (2003) Contribution of 5-hydroxytryptamine 1B receptors and 20-hydroxyeiscosatetraenoic acid to fall in cerebral blood flow after subarachnoid hemorrhage. Stroke 34:1269–1275

    PubMed  Article  Google Scholar 

  22. Cao S et al (2017) Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep 7:2417. https://doi.org/10.1038/s41598-017-02679-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chaichana KL, Levy AP, Miller-Lotan R, Shakur S, Tamargo RJ (2007) Haptoglobin 2-2 genotype determines chronic vasospasm after experimental subarachnoid hemorrhage. Stroke 38:3266–3271

    PubMed  Article  CAS  Google Scholar 

  24. Chan RC, Durity FA, Thompson GB, Nugent RA, Kendall M (1984) The role of the prostacyclin-thromboxane system in cerebral vasospasm following induced subarachnoid hemorrhage in the rabbit. J Neurosurg 61:1120–1128

    PubMed  Article  CAS  Google Scholar 

  25. Chang CZ, Wu SC, Kwan AL, Lin CL, Hwang SL (2011) 6-Mercaptopurine reverses experimental vasospasm and alleviates the production of endothelins in NO-independent mechanism-a laboratory study. Acta Neurochir 153:939–949. https://doi.org/10.1007/s00701-010-0865-5

    Article  PubMed  Google Scholar 

  26. Chang CZ, Wu SC, Lin CL, Hwang SL, Kwan AL (2012) Purine anti-metabolite attenuates nuclear factor kappaB and related pro-inflammatory cytokines in experimental vasospasm. Acta Neurochir 154:1877–1885. https://doi.org/10.1007/s00701-012-1452-8

    Article  PubMed  Google Scholar 

  27. Chang CZ, Wu SC, Kwan AL (2014) Glycyrrhizin attenuates toll like receptor-2, -4 and experimental vasospasm in a rat model. J Immunol Res 2014:740549. https://doi.org/10.1155/2014/740549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chang C-Z, Wu S-C, Lin C-L, Kwan A-L (2015) Curcumin, encapsulated in nano-sized PLGA, down-regulates nuclear factor kappaB (p65) and subarachnoid hemorrhage induced early brain injury in a rat model. Brain Res 1608:215–224. https://doi.org/10.1016/j.brainres.2015.02.039

    Article  PubMed  CAS  Google Scholar 

  29. Chang C-Z, Wu S-C, Kwan A-L, Lin C-L (2016) Rhinacanthin-C, A fat-soluble extract from Rhinacanthus nasutus, modulates high-mobility group box 1-related neuro-inflammation and subarachnoid hemorrhage-induced brain apoptosis in a rat model. World Neurosurg 86:349–360. https://doi.org/10.1016/j.wneu.2015.08.071

    Article  PubMed  Google Scholar 

  30. Chaudhry SR et al (2018) Systemic high-mobility group box-1: a novel predictive biomarker for cerebral vasospasm in aneurysmal subarachnoid hemorrhage. Crit Care Med 46:e1023–e1028. https://doi.org/10.1097/ccm.0000000000003319

    Article  PubMed  CAS  Google Scholar 

  31. Chehrazi BB, Giri S, Joy RM (1989) Prostaglandins and vasoactive amines in cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 20:217–224

    PubMed  Article  CAS  Google Scholar 

  32. Chen D, Chen J-J, Yin Q, Guan J-H, Liu Y-H (2009) Role of ERK1/2 and vascular cell proliferation in cerebral vasospasm after experimental subarachnoid hemorrhage. Acta Neurochir 151:1127–1134. https://doi.org/10.1007/s00701-009-0385-3

    Article  PubMed  Google Scholar 

  33. Chen J et al (2014) Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: a possible role for the regulation of pro-inflammatory cytokines. J Pineal Res 57:340–347. https://doi.org/10.1111/jpi.12173

    Article  PubMed  CAS  Google Scholar 

  34. Chyatte D (1989) Prevention of chronic cerebral vasospasm in dogs with ibuprofen and high-dose methylprednisolone. Stroke 20:1021–1026

    PubMed  Article  CAS  Google Scholar 

  35. Chyatte D, Fode NC, Nichols DA, Sundt TM Jr (1987) Preliminary report: effects of high dose methylprednisolone on delayed cerebral ischemia in patients at high risk for vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery 21:157–160

    PubMed  Article  CAS  Google Scholar 

  36. Ciuffi M, Tarlini L, Mugnai S, Franchi-Micheli S, Zilletti L (1996) Hemoglobin affects lipid peroxidation and prostaglandin E2 formation in rat corticocerebral tissues in vitro. Biochem Pharmacol 52:97–103

    PubMed  Article  CAS  Google Scholar 

  37. Clark JF, Reilly M, Sharp FR (2002) Oxidation of bilirubin produces compounds that cause prolonged vasospasm of rat cerebral vessels: a contributor to subarachnoid hemorrhage-induced vasospasm. J Cereb Blood Flow Metab 22:472–478. https://doi.org/10.1097/00004647-200204000-00011

    Article  PubMed  CAS  Google Scholar 

  38. Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1:1397–1406

    PubMed  Article  CAS  Google Scholar 

  39. de Oliveira Manoel AL, Macdonald RL (2018) Neuroinflammation as a target for intervention in subarachnoid hemorrhage. Front Neurol 9:292. https://doi.org/10.3389/fneur.2018.00292

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Rooij NK, Linn FH, van der Plas JA, Algra A, Rinkel GJ (2007) Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry 78:1365–1372. https://doi.org/10.1136/jnnp.2007.117655

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dietrich HH, Dacey RG Jr (2000) Molecular keys to the problems of cerebral vasospasm. Neurosurgery 46:517–530

    PubMed  Article  CAS  Google Scholar 

  42. Dong Y et al (2016) Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. J Pineal Res 60:253–262. https://doi.org/10.1111/jpi.12300

    Article  PubMed  CAS  Google Scholar 

  43. Echigo R et al (2012) Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med 10:80. https://doi.org/10.1186/1479-5876-10-80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Edwards P et al (2005) Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet 365:1957–1959. https://doi.org/10.1016/s0140-6736(05)66552-x

    Article  PubMed  Google Scholar 

  45. Egemen N et al (1993) The effect of Iloprost on chronic cerebral vasospasm. Gen Pharmacol 24:403–409

    PubMed  Article  CAS  Google Scholar 

  46. Fassbender K et al (2000) Endothelin-1 in subarachnoid hemorrhage: an acute-phase reactant produced by cerebrospinal fluid leukocytes. Stroke 31:2971–2975

    PubMed  Article  CAS  Google Scholar 

  47. Froehler MT, Kooshkabadi A, Miller-Lotan R, Blum S, Sher S, Levy A, Tamargo RJ (2010) Vasospasm after subarachnoid hemorrhage in haptoglobin 2-2 mice can be prevented with a glutathione peroxidase mimetic. J Clin Neurosci 17:1169–1172. https://doi.org/10.1016/j.jocn.2010.04.014

    Article  PubMed  CAS  Google Scholar 

  48. Frosini M, Sesti C, Valoti M, Palmi M, Fusi F, Parente L, Sgaragli G (1999) Rectal temperature and prostaglandin E2 increase in cerebrospinal fluid of conscious rabbits after intracerebroventricular injection of hemoglobin. Exp Brain Res 126:252–258

    PubMed  Article  CAS  Google Scholar 

  49. Fujimoto M et al (2018) Effects of tenascin-C knockout on cerebral vasospasm after experimental subarachnoid hemorrhage in mice. Mol Neurobiol 55:1951–1958. https://doi.org/10.1007/s12035-017-0466-x

    Article  PubMed  CAS  Google Scholar 

  50. Fukami M, Tani E, Takai A, Yamaura I, Minami N (1995) Activity of smooth muscle phosphatases 1 and 2A in rabbit basilar artery in vasospasm. Stroke 26:2321–2327

    PubMed  Article  CAS  Google Scholar 

  51. Gabikian P, Clatterbuck RE, Eberhart CG, Tyler BM, Tierney TS, Tamargo RJ (2002) Prevention of experimental cerebral vasospasm by intracranial delivery of a nitric oxide donor from a controlled-release polymer: toxicity and efficacy studies in rabbits and rats. Stroke 33:2681–2686

    PubMed  Article  Google Scholar 

  52. Gaetani P, Marzatico F, Renault B, Fulle I, Lombardi D, Ferlenga P, Rodriguez y Baena R (1990a) High-dose methylprednisolone and ‘ex vivo’ release of eicosanoids after experimental subarachnoid haemorrhage. Neurol Res 12:111–116

    PubMed  Article  CAS  Google Scholar 

  53. Gaetani P et al (1990b) Arachidonic acid metabolism and pathophysiologic aspects of subarachnoid hemorrhage in rats. Stroke 21:328–332

    PubMed  Article  CAS  Google Scholar 

  54. Gaetani P, Marzatico F, Lombardi D, Adinolfi D, Rodriguez y Baena R (1991) Effect of high-dose methylprednisolone and U74006F on eicosanoid synthesis after subarachnoid hemorrhage in rats. Stroke 22:215–220

    PubMed  Article  CAS  Google Scholar 

  55. Gaetani P, Rodriguez y Baena R, Quaglini S, Bellazzi R, Cafe C, Torri C, Marzatico F (1994) Experimental subarachnoid hemorrhage: events related to anti-oxidant enzymatic systems and eicosanoid peroxide enhancement. Neurochem Res 19:839–844

    PubMed  Article  CAS  Google Scholar 

  56. Galea J et al (2018) Reduction of inflammation after administration of interleukin-1 receptor antagonist following aneurysmal subarachnoid hemorrhage: results of the subcutaneous interleukin-1Ra in SAH (SCIL-SAH) study. J Neurosurg 128:515–523. https://doi.org/10.3171/2016.9.jns16615

    Article  PubMed  CAS  Google Scholar 

  57. Gallia GL, Tamargo RJ (2006) Leukocyte-endothelial cell interactions in chronic vasospasm after subarachnoid hemorrhage. Neurol Res 28:750–758. https://doi.org/10.1179/016164106X152025

    Article  PubMed  CAS  Google Scholar 

  58. Ghodsi SM, Mohebbi N, Naderi S, Anbarloie M, Aoude A, Habibi Pasdar SS (2015) Comparative efficacy of meloxicam and placebo in vasospasm of patients with subarachnoid hemorrhage Iran. J Pharm Res 14:125–130

    CAS  Google Scholar 

  59. Gill P, Jindal NL, Jagdis A, Vadas P (2015) Platelets in the immune response: revisiting platelet-activating factor in anaphylaxis. J Allergy Clin Immunol 135:1424–1432. https://doi.org/10.1016/j.jaci.2015.04.019

    Article  PubMed  CAS  Google Scholar 

  60. Gomis P, Graftieaux JP, Sercombe R, Hettler D, Scherpereel B, Rousseaux P (2010) Randomized, double-blind, placebo-controlled, pilot trial of high-dose methylprednisolone in aneurysmal subarachnoid hemorrhage. J Neurosurg 112:681–688. https://doi.org/10.3171/2009.4.jns081377

    Article  PubMed  CAS  Google Scholar 

  61. Greenhalgh AD, Brough D, Robinson EM, Girard S, Rothwell NJ, Allan SM (2012) Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. Dis Mod Mech 5:823–833. https://doi.org/10.1242/dmm.008557

    Article  CAS  Google Scholar 

  62. Gu X, Zheng C, Zheng Q, Chen S, Li W, Shang Z, Zhang H (2017) Salvianolic acid A attenuates early brain injury after subarachnoid hemorrhage in rats by regulating ERK/P38/Nrf2 signaling. Am J Transl Res 9:5643–5652

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Guo Z et al (2016) Lipoxin A4 reduces inflammation through formyl peptide receptor 2/p38 MAPK signaling pathway in subarachnoid hemorrhage rats. Stroke 47:490–497. https://doi.org/10.1161/STROKEAHA.115.011223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Gutteridge JM (1987) The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation. Biochim Biophys Acta 917:219–223

    PubMed  Article  CAS  Google Scholar 

  65. Hanafy KA (2013) The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflamm 10:83. https://doi.org/10.1186/1742-2094-10-83

    Article  CAS  Google Scholar 

  66. Handa Y, Okamoto S, Uemura Y, Nozaki K, Handa H, Watanabe Y, Osama H (1986) Effects of the subarachnoid hemorrhage on the release of arachidonate metabolites from canine cerebral arteries. No Shinkei Brain Nerve 38:1137–1142

    PubMed  CAS  Google Scholar 

  67. Hao G, Dong Y, Huo R, Wen K, Zhang Y, Liang G (2016) Rutin inhibits neuroinflammation and provides neuroprotection in an experimental rat model of subarachnoid hemorrhage, possibly through suppressing the RAGE-NF-kappaB inflammatory signaling pathway. Neurochem Res 41:1496–1504. https://doi.org/10.1007/s11064-016-1863-7

    Article  PubMed  CAS  Google Scholar 

  68. Hara H, Kobayashi S (1993) Effect of rat subarachnoid hemorrhage on serotonin innervation of the cerebral ventricular wall and serotonin neurons of the ventral surface of the brain stem: an immunohistochemical study. Exp Neurol 119:268–271

    PubMed  Article  CAS  Google Scholar 

  69. Harada T, Mayberg MR (1992) Inhibition of delayed arterial narrowing by the iron-chelating agent deferoxamine. J Neurosurg 77:763–767. https://doi.org/10.3171/jns.1992.77.5.0763

    Article  PubMed  CAS  Google Scholar 

  70. Harizi H, Corcuff JB, Gualde N (2008) Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med 14:461–469. https://doi.org/10.1016/j.molmed.2008.08.005

    Article  PubMed  CAS  Google Scholar 

  71. Haruma J et al (2016) Anti-high mobility group box-1 (HMGB1) antibody attenuates delayed cerebral vasospasm and brain injury after subarachnoid hemorrhage in rats. Science 6:37755. https://doi.org/10.1038/srep37755

    Article  CAS  Google Scholar 

  72. Hashi K, Meyer JS, Shinmaru S, Welch KM, Teraura T (1972) Cerebral hemodynamic and metabolic changes after experimental subarachnoid hemorrhage. J Neurol Sci 17:1–14

    PubMed  Article  CAS  Google Scholar 

  73. Hashi K, Takakura K, Sano K, Ohta T, Saito I, Okada K (1988) Intravenous hydrocortisone in large doses in the treatment of delayed ischemic neurological deficits following subarachnoid hemorrhage: results of a multi-center controlled double-blind clinical study. No Shinkei 40:373–382

    CAS  Google Scholar 

  74. Hashiba Y, Tosaka M, Saito N, Imai H, Shimizu T, Sasaki T (2007) Vasorelaxing effect of the Rho-kinase inhibitor, Y-27632, in isolated canine basilar arteries. Neurol Res 29:485–489

    PubMed  Article  CAS  Google Scholar 

  75. Herlaar E, Brown Z (1999) p38 MAPK signalling cascades in inflammatory disease. Mol Med Today 5:439–447

    PubMed  Article  CAS  Google Scholar 

  76. Hirashima Y, Endo S, Otsuji T, Karasawa K, Nojima S, Takaku A (1993) Platelet-activating factor and cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg 78:592–597

    PubMed  Article  CAS  Google Scholar 

  77. Hirashima Y, Endo S, Kurimoto M, Tsukamoto E, Takaku A (1994) Platelet-activating factor and antiphospholipid antibodies in subarachnoid haemorrhage. Acta Neurochir 128:144–149

    PubMed  Article  CAS  Google Scholar 

  78. Hirashima Y, Endo S, Kato R, Takaku A (1996) Prevention of cerebrovasospasm following subarachnoid hemorrhage in rabbits by the platelet-activating factor antagonist. J Neurosurg 84:826–830

    PubMed  Article  CAS  Google Scholar 

  79. Hirashima Y, Nakamura S, Endo S, Kuwayama N, Naruse Y, Takaku A (1997) Elevation of platelet activating factor, inflammatory cytokines, and coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage. Neurochem Res 22:1249–1255

    PubMed  Article  CAS  Google Scholar 

  80. Hirashima Y, Endo S, Nukui H, Kobayashi N, Takaku A (2001) Effect of a platelet-activating factor receptor antagonist, E5880, on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: open clinical trial to investigate efficacy and safety. Neurol Med Chir 41:165–175

    Article  CAS  Google Scholar 

  81. Hong Y, Guo S, Chen S, Sun C, Zhang J, Sun X (2012) Beneficial effect of hydrogen-rich saline on cerebral vasospasm after experimental subarachnoid hemorrhage in rats. J Neurosci Res 90:1670–1680. https://doi.org/10.1002/jnr.22739

    Article  PubMed  CAS  Google Scholar 

  82. Hongo K et al (1988) Subarachnoid hemorrhage inhibition of endothelium-derived relaxing factor in rabbit basilar artery. J Neurosurg 69:247–253

    PubMed  Article  CAS  Google Scholar 

  83. Ieong C, Sun H, Wang Q, Ma J (2018) Glycyrrhizin suppresses the expressions of HMGB1 and ameliorates inflammative effect after acute subarachnoid hemorrhage in rat model. J Clin Neurosci 47:278–284. https://doi.org/10.1016/j.jocn.2017.10.034

    Article  PubMed  CAS  Google Scholar 

  84. Jackowski A, Crockard A, Burnstock G, Lincoln J (1989) Alterations in serotonin and neuropeptide Y content of cerebrovascular sympathetic nerves following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 9:271–279

    PubMed  Article  CAS  Google Scholar 

  85. Kassell NF, Haley EC Jr, Apperson-Hansen C, Alves WM (1996) Randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in Europe, Australia, and New Zealand. J Neurosurg 84:221–228. https://doi.org/10.3171/jns.1996.84.2.0221

    Article  PubMed  CAS  Google Scholar 

  86. Keskil IS et al (1994) Alteration by Iloprost of the vasospastic effects of endothelin-1 in rabbit cerebral vessels. NeuroReport 5:1089–1092

    PubMed  Article  CAS  Google Scholar 

  87. Kiwak KJ, Moskowitz MA, Levine L (1985) Leukotriene production in gerbil brain after ischemic insult, subarachnoid hemorrhage, and concussive injury. J Neurosurg 62:865–869

    PubMed  Article  CAS  Google Scholar 

  88. Kobayashi H, Ide H, Handa Y, Aradachi H, Arai Y, Kubota T (1992) Effect of leukotriene antagonist on experimental delayed cerebral vasospasm. Neurosurgery 31:550–555

    PubMed  Article  CAS  Google Scholar 

  89. Konczalla J, Vatter H, Weidauer S, Raabe A, Seifert V (2006) Alteration of the cerebrovascular function of endothelin B receptor after subarachnoidal hemorrhage in the rat. Exp Biol Med 231:1064–1068

    CAS  Google Scholar 

  90. Kranc KR et al (2000) Oxidative degradation of bilirubin produces vasoactive compounds. Eur J Biochem 267:7094–7101

    PubMed  Article  CAS  Google Scholar 

  91. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:916–925. https://doi.org/10.1097/01.wcb.0000125886.48838.7e

    Article  PubMed  CAS  Google Scholar 

  92. Kwon MS et al (2015) Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci 16:5028–5046. https://doi.org/10.3390/ijms16035028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Larsen CC, Povlsen GK, Rasmussen MN, Edvinsson L (2011) Improvement in neurological outcome and abolition of cerebrovascular endothelin B and 5-hydroxytryptamine 1B receptor upregulation through mitogen-activated protein kinase kinase 1/2 inhibition after subarachnoid hemorrhage in rats. J Neurosurg 114:1143–1153. https://doi.org/10.3171/2010.6.JNS1018

    Article  PubMed  CAS  Google Scholar 

  94. Lee CI et al (2012) Immune and inflammatory gene signature in rat cerebrum in subarachnoid hemorrhage with microarray analysis. Mol Med Rep 5:118–125. https://doi.org/10.3892/mmr.2011.614

    Article  PubMed  CAS  Google Scholar 

  95. Li T, Zhang P, Yuan B, Zhao D, Chen Y, Zhang X (2013) Thrombin-induced TGF-beta1 pathway: a cause of communicating hydrocephalus post subarachnoid hemorrhage. Int J Mol Med 31:660–666. https://doi.org/10.3892/ijmm.2013.1253

    Article  PubMed  CAS  Google Scholar 

  96. Li J et al (2016) Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury after subarachnoid hemorrhage. Mol Neurobiol 53:2668–2678. https://doi.org/10.1007/s12035-015-9318-8

    Article  PubMed  CAS  Google Scholar 

  97. Liu H, Yang M, Pan L, Liu P, Ma L (2016) Hyperbaric oxygen intervention modulates early brain injury after experimental subarachnoid hemorrhage in rats: possible involvement of TLR4/NF-x03BA; B-mediated signaling pathway. Cell Physiol Biochem 38:2323–2336. https://doi.org/10.1159/000445586

    Article  PubMed  CAS  Google Scholar 

  98. Lobato RD, Marin J, Salaices M, Rivilla F, Burgos J (1980) Cerebrovascular reactivity to noradrenaline and serotonin following experimental subarachnoid hemorrhage. J Neurosurg 53:480–485

    PubMed  Article  CAS  Google Scholar 

  99. Lovelock CE, Rinkel GJ, Rothwell PM (2010) Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. Neurology 74:1494–1501. https://doi.org/10.1212/WNL.0b013e3181dd42b3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lucke-Wold BP et al (2016) Aneurysmal subarachnoid hemorrhage and neuroinflammation: a comprehensive review. Int J Mol Sci 17:497. https://doi.org/10.3390/ijms17040497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L (2014) The role of oxidative stress during inflammatory processes. Biol Chem 395:203–230. https://doi.org/10.1515/hsz-2013-0241

    Article  CAS  PubMed  Google Scholar 

  102. Lv T, Miao Y-F, Jin Y-C, Yang S-F, Wu H, Dai J, Zhang X-H (2017) Ethyl pyruvate attenuates early brain injury following subarachnoid hemorrhage in the endovascular perforation rabbit model possibly via anti-inflammation and inhibition of JNK signaling pathway. Neurochem Res 42:1044–1056. https://doi.org/10.1007/s11064-016-2138-z

    Article  PubMed  CAS  Google Scholar 

  103. Lye RH, Paul KS, Forster CM, Whalley ET, Dutton J (1982) Effect of fibrin-fibrinogen degradation products on human basilar artery preparations. J Neurosurg 56:339–343

    PubMed  Article  CAS  Google Scholar 

  104. Lyons MA, Shukla R, Zhang K, Pyne GJ, Singh M, Biehle SJ, Clark JF (2004) Increase of metabolic activity and disruption of normal contractile protein distribution by bilirubin oxidation products in vascular smooth-muscle cells. J Neurosurg 100:505–511. https://doi.org/10.3171/jns.2004.100.3.0505

    Article  PubMed  CAS  Google Scholar 

  105. Ma C-x et al (2009) Toll-like receptor 4/nuclear factor-kappa B signaling detected in brain after early subarachnoid hemorrhage. Chin Med J 122:1575–1581

    PubMed  CAS  Google Scholar 

  106. Macdonald RL et al (2002) Intracisternal sodium nitroprusside fails to prevent vasospasm in nonhuman primates. Neurosurgery 51:761–768

    PubMed  Article  Google Scholar 

  107. Macdonald RL et al (2011) Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 10:618–625. https://doi.org/10.1016/s1474-4422(11)70108-9

    Article  PubMed  CAS  Google Scholar 

  108. Maddahi A, Ansar S, Chen Q, Edvinsson L (2011) Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab 31:144–154. https://doi.org/10.1038/jcbfm.2010.62

    Article  PubMed  CAS  Google Scholar 

  109. Maddahi A, Povlsen GK, Edvinsson L (2012) Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflamm 9:274. https://doi.org/10.1186/1742-2094-9-274

    Article  CAS  Google Scholar 

  110. Maeda Y, Tani E, Miyamoto T (1981) Prostaglandin metabolism in experimental cerebral vasospasm. J Neurosurg 55:779–785. https://doi.org/10.3171/jns.1981.55.5.0779

    Article  PubMed  CAS  Google Scholar 

  111. Magna M, Pisetsky DS (2014) The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med 20:138–146. https://doi.org/10.2119/molmed.2013.00164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Miao FJ, Lee TJ (1989) Effects of bilirubin on cerebral arterial tone in vitro. J Cereb Blood Flow Metab 9:666–674

    PubMed  Article  CAS  Google Scholar 

  113. Minami N, Tani E, Yokota M, Maeda Y, Yamaura I (1991) Immunohistochemistry of leukotriene C4 in experimental cerebral vasospasm. Acta Neuropathol 81:401–407

    PubMed  Article  CAS  Google Scholar 

  114. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S, Yang Z (2002) Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 22:8467–8477

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  115. Miranda FJ, Alabadi JA, Torregrosa G, Salom JB, Jover T, Barbera MD, Alborch E (1996) Modulatory role of endothelial and nonendothelial nitric oxide in 5-hydroxytryptamine-induced contraction in cerebral arteries after subarachnoid hemorrhage. Neurosurgery 39:998–1003

    PubMed  CAS  Google Scholar 

  116. Mohney N et al (2018) A propensity score analysis of the impact of dexamethasone use on delayed cerebral ischemia and poor functional outcomes after subarachnoid hemorrhage. World Neurosurg 109:e655–e661. https://doi.org/10.1016/j.wneu.2017.10.051

    Article  PubMed  Google Scholar 

  117. Montuschi P, Barnes PJ, Roberts LJ 2nd (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18:1791–1800. https://doi.org/10.1096/fj.04-2330rev

    Article  PubMed  CAS  Google Scholar 

  118. Motohashi O, Suzuki M, Yanai N, Umezawa K, Shida N, Yoshimoto T (1995) Thrombin and TGF-beta promote human leptomeningeal cell proliferation in vitro. Neurosci Lett 190:105–108

    PubMed  Article  CAS  Google Scholar 

  119. Muroi C, Hugelshofer M, Seule M, Keller E (2014) The impact of nonsteroidal anti-inflammatory drugs on inflammatory response after aneurysmal subarachnoid hemorrhage. Neurocrit Care 20:240–246. https://doi.org/10.1007/s12028-013-9930-2

    Article  PubMed  CAS  Google Scholar 

  120. Nakagomi T et al (1987) Effect of subarachnoid hemorrhage on endothelium-dependent vasodilation. J Neurosurg 66:915–923

    PubMed  Article  CAS  Google Scholar 

  121. Nassiri F, Ibrahim GM, Badhiwala JH, Witiw CD, Mansouri A, Alotaibi NM, Macdonald RL (2016) A propensity score-matched study of the use of non-steroidal anti-inflammatory agents following aneurysmal subarachnoid hemorrhage. Neurocrit Care 25:351–358. https://doi.org/10.1007/s12028-016-0266-6

    Article  PubMed  CAS  Google Scholar 

  122. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295. https://doi.org/10.1074/jbc.R900010200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Nicolas CS et al (2013) The role of JAK-STAT signaling within the CNS. Jakstat 2:e22925. https://doi.org/10.4161/jkst.22925

    Article  PubMed  PubMed Central  Google Scholar 

  124. Noseworthy TW, Weir B, Boisvert D, Espinosa F, Overton T, Marshal ML (1984) Effect of reserpine-kanamycin treatment on chronic vasospasm after platelet-enriched subarachnoid hemorrhage in primates. Neurosurgery 14:193–197

    PubMed  Article  CAS  Google Scholar 

  125. Okada T, Suzuki H (2017) Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal subarachnoid hemorrhage. Neural Regen Res 12:193–196. https://doi.org/10.4103/1673-5374.200795

    Article  PubMed  PubMed Central  Google Scholar 

  126. Okamoto S, Handa H, Toda N (1984) Role of intrinsic arachidonate metabolites in the vascular action of erythrocyte breakdown products. Stroke 15:60–64

    PubMed  Article  CAS  Google Scholar 

  127. Onoue H, Tsutsui M, Smith L, Stelter A, O’Brien T, Katusic ZS (1998) Expression and function of recombinant endothelial nitric oxide synthase gene in canine basilar artery after experimental subarachnoid hemorrhage. Stroke 29:1959–1965

    PubMed  Article  CAS  Google Scholar 

  128. Orz YI, Tsuji T, Aoki T, Yen Y, Chiba S, Kobayashi S (1998) Effects of oxyhemoglobin on vasoconstriction in response to 5-hydroxytryptamine in isolated, perfused canine basilar arteries. Neurosurgery 43:1176–1184

    PubMed  Article  CAS  Google Scholar 

  129. Osuka K, Suzuki Y, Watanabe Y, Takayasu M, Yoshida J (1998) Inducible cyclooxygenase expression in canine basilar artery after experimental subarachnoid hemorrhage. Stroke 29:1219–1222

    PubMed  Article  CAS  Google Scholar 

  130. Osuka K, Watanabe Y, Yamauchi K, Nakazawa A, Usuda N, Tokuda M, Yoshida J (2006) Activation of the JAK-STAT signaling pathway in the rat basilar artery after subarachnoid hemorrhage. Brain Res 1072:1–7

    PubMed  Article  CAS  Google Scholar 

  131. Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Wakabayashi T, Takayasu M (2010) Oxidative stress activates STAT1 in basilar arteries after subarachnoid hemorrhage. Brain Res 1332:12–19. https://doi.org/10.1016/j.brainres.2010.03.046

    Article  PubMed  CAS  Google Scholar 

  132. Ozaki E, Campbell M, Doyle SL (2015) Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res 8:15–27. https://doi.org/10.2147/JIR.S51250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Palta S, Saroa R, Palta A (2014) Overview of the coagulation system. Indian J Anaesth 58:515–523. https://doi.org/10.4103/0019-5049.144643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Pan H, Wang H, Zhu L, Mao L, Qiao L, Su X (2011) Depletion of Nrf2 enhances inflammation induced by oxyhemoglobin in cultured mice astrocytes. Neurochem Res 36:2434–2441. https://doi.org/10.1007/s11064-011-0571-6

    Article  PubMed  CAS  Google Scholar 

  135. Pan Y-X et al (2013) Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, attenuates cerebral vasospasm via inhibition of tumor-necrosis factor-alpha. J Clin Neurosci 20:726–730. https://doi.org/10.1016/j.jocn.2012.09.012

    Article  PubMed  CAS  Google Scholar 

  136. Paul KS, Whalley ET, Forster C, Lye R, Dutton J (1982) Prostacyclin and cerebral vessel relaxation. J Neurosurg 57:334–340

    PubMed  Article  CAS  Google Scholar 

  137. Pelofsky S, Jacobson ED, Fisher RG (1972) Effects of prostaglandin E1 on experimental cerebral vasospasm. J Neurosurg 36:634–639

    PubMed  Article  CAS  Google Scholar 

  138. Peng Y et al (2018) Neuroprotective effects of magnesium lithospermate B against subarachnoid hemorrhage in rats. Am J Chin Med 46:1225–1241. https://doi.org/10.1142/S0192415X18500647

    Article  PubMed  CAS  Google Scholar 

  139. Petruk KC et al (1988) Nimodipine treatment in poor-grade aneurysm patients. Results of a multicenter double-blind placebo-controlled trial. J Neurosurg 68:505–517. https://doi.org/10.3171/jns.1988.68.4.0505

    Article  PubMed  CAS  Google Scholar 

  140. Petzold GC, Einhaupl KM, Dirnagl U, Dreier JP (2003) Ischemia triggered by spreading neuronal activation is induced by endothelin-1 and hemoglobin in the subarachnoid space. Ann Neurol 54:591–598. https://doi.org/10.1002/ana.10723

    Article  PubMed  CAS  Google Scholar 

  141. Pickard JD, Perry S (1984) Spectrum of altered reactivity of isolated cerebral arteries following subarachnoid haemorrhage–response to potassium, pH, noradrenaline, 5-hydroxytryptamine, and sodium loading. J Cereb Blood Flow Metab 4:599–609

    PubMed  Article  CAS  Google Scholar 

  142. Pickard JD, Walker V, Perry S, Smythe PJ, Eastwood S, Hunt R (1984) Arterial eicosanoid production following chronic exposure to a periarterial haematoma. J Neurol Neurosurg Psychiatry 47:661–667

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. Pluta RM (2005) Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther 105:23–56. https://doi.org/10.1016/j.pharmthera.2004.10.002

    Article  PubMed  CAS  Google Scholar 

  144. Pradilla G, Thai QA, Legnani FG, Hsu W, Kretzer RM, Wang PP, Tamargo RJ (2004) Delayed intracranial delivery of a nitric oxide donor from a controlled-release polymer prevents experimental cerebral vasospasm in rabbits. Neurosurgery 55:1393–1399

    PubMed  Article  Google Scholar 

  145. Pradilla G, Chaichana KL, Hoang S, Huang J, Tamargo RJ (2010) Inflammation and cerebral vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am 21:365–379. https://doi.org/10.1016/j.nec.2009.10.008

    Article  PubMed  Google Scholar 

  146. Pradilla G et al (2012) Systemic L-citrulline prevents cerebral vasospasm in haptoglobin 2-2 transgenic mice after subarachnoid hemorrhage. Neurosurgery 70:747–756. https://doi.org/10.1227/NEU.0b013e3182363c2f

    Article  PubMed  Google Scholar 

  147. Rasmussen R, Wetterslev J, Stavngaard T, Juhler M, Skjoth-Rasmussen J, Grande PO, Olsen NV (2015) Effects of prostacyclin on cerebral blood flow and vasospasm after subarachnoid hemorrhage: randomized, pilot trial. Stroke 46:37–41. https://doi.org/10.1161/STROKEAHA.114.007470

    Article  PubMed  CAS  Google Scholar 

  148. Rincon F, Rossenwasser RH, Dumont A (2013) The epidemiology of admissions of nontraumatic subarachnoid hemorrhage in the United States. Neurosurgery 73:217–222. https://doi.org/10.1227/01.neu.0000430290.93304.33

    Article  PubMed  Google Scholar 

  149. Roberts I et al (2004) Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 364:1321–1328. https://doi.org/10.1016/s0140-6736(04)17188-2

    Article  PubMed  Google Scholar 

  150. Rodriguez y Baena R, Gaetani P, Folco G, Vigano T, Paoletti P (1986) Arachidonate metabolites and vasospasm after subarachnoid haemorrhage. Neurol Res 8:25–32

    PubMed  Article  CAS  Google Scholar 

  151. Rodriguez y Baena R, Gaetani P, Marzatico F, Benzi G, Pacchiarini L, Paoletti P (1989) Effects of nicardipine on the ex vivo release of eicosanoids after experimental subarachnoid hemorrhage. J Neurosurg 71:903–908

    PubMed  Article  CAS  Google Scholar 

  152. Rosenblum WI, Nelson GH, Nishimura H (1990) Leukotriene constriction of mouse pial arterioles in vivo is endothelium-dependent and receptor-mediated. Stroke 21:1618–1620

    PubMed  Article  CAS  Google Scholar 

  153. Sabapathy K (2012) Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci 106:145–169. https://doi.org/10.1016/b978-0-12-396456-4.00013-4

    Article  PubMed  CAS  Google Scholar 

  154. Saito A, Lee TJ (1987) Serotonin as an alternative transmitter in sympathetic nerves of large cerebral arteries of the rabbit. Circ Res 60:220–228

    PubMed  Article  CAS  Google Scholar 

  155. Saito I et al (1998) Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage. Neurosurgery 42:269–277

    PubMed  Article  CAS  Google Scholar 

  156. Saito A et al (2001) Transgenic CuZn-superoxide dismutase inhibits NO synthase induction in experimental subarachnoid hemorrhage. Stroke 32:1652–1657

    PubMed  Article  CAS  Google Scholar 

  157. Sakaki S, Kuwabara H, Ohta S (1986) Biological defence mechanism in the pathogenesis of prolonged cerebral vasospasm in the patients with ruptured intracranial aneurysms. Stroke 17:196–202

    PubMed  Article  CAS  Google Scholar 

  158. Sakamoto M, Takaki E, Yamashita K, Watanabe K, Tabuchi S, Watanabe T, Satoh K (2002) Nonenzymatic derived lipid peroxide, 8-iso-PGF2 alpha, participates in the pathogenesis of delayed cerebral vasospasm in a canine SAH model. Neurol Res 24:301–306

    PubMed  Article  CAS  Google Scholar 

  159. Samraj AK, Muller AH, Grell A-S, Edvinsson L (2014) Role of unphosphorylated transcription factor STAT3 in late cerebral ischemia after subarachnoid hemorrhage. J Cereb Blood Flow Metab 34:759–763. https://doi.org/10.1038/jcbfm.2014.15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Sasaki T, Murota SI, Wakai S, Asano T, Sano K (1981a) Evaluation of prostaglandin biosynthetic activity in canine basilar artery following subarachnoid injection of blood. J Neurosurg 55:771–778. https://doi.org/10.3171/jns.1981.55.5.0771

    Article  PubMed  CAS  Google Scholar 

  161. Sasaki T, Wakai S, Asano T, Watanabe T, Kirino T, Sano K (1981b) The effect of a lipid hydroperoxide of arachidonic acid on the canine basilar artery. An experimental study on cerebral vasospasm. J Neurosurg 54:357–365

    PubMed  Article  CAS  Google Scholar 

  162. Sasaki T, Kasuya H, Onda H, Sasahara A, Goto S, Hori T, Inoue I (2004) Role of p38 mitogen-activated protein kinase on cerebral vasospasm after subarachnoid hemorrhage. Stroke 35:1466–1470

    PubMed  Article  CAS  Google Scholar 

  163. Sato M, Tani E, Fujikawa H, Kaibuchi K (2000) Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res 87:195–200

    PubMed  Article  CAS  Google Scholar 

  164. Satoh S et al (1991) The role of platelets in the development of cerebral vasospasm. Brain Res Bull 27:663–668

    PubMed  Article  CAS  Google Scholar 

  165. Satoh S-I, Ikegaki I, Kawasaki K, Asano T, Shibuya M (2014) Pleiotropic effects of the rho-kinase inhibitor fasudil after subarachnoid hemorrhage: a review of preclinical and clinical studies. Curr Vasc Pharmacol 12:758–765

    PubMed  Article  CAS  Google Scholar 

  166. Schallner N et al (2015) Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Investig 125:2609–2625. https://doi.org/10.1172/JCI78443

    Article  PubMed  Google Scholar 

  167. Seifert V, Stolke D, Kaever V, Dietz H (1986) Arachidonic acid metabolism following aneurysm rupture. Eur Arch Psychiatry Neurol Sci 236:94–101

    PubMed  Article  CAS  Google Scholar 

  168. Seifert V, Stolke D, Kunz U, Resch K (1988) Influence of blood volume on cerebrospinal fluid levels of arachidonic acid metabolites after subarachnoid hemorrhage: experimental study on the pathogenesis of cerebral vasospasm. Neurosurgery 23:313–321

    PubMed  Article  CAS  Google Scholar 

  169. Shao A et al (2016) Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF-kappaB pathway and NLRP3 inflammasome. Mol Neurobiol 53:3462–3476. https://doi.org/10.1007/s12035-015-9242-y

    Article  PubMed  CAS  Google Scholar 

  170. Sharma JN, Al-Omran A, Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252–259. https://doi.org/10.1007/s10787-007-0013-x

    Article  PubMed  CAS  Google Scholar 

  171. Shimizu T, Watanabe T, Asano T, Seyama Y, Takakura K (1988) Activation of the arachidonate 5-lipoxygenase pathway in the canine basilar artery after experimental subarachnoidal hemorrhage. J Neurochem 51:1126–1131

    PubMed  Article  CAS  Google Scholar 

  172. Singh N et al (2014) The effect of intravenous interleukin-1 receptor antagonist on inflammatory mediators in cerebrospinal fluid after subarachnoid haemorrhage: a phase II randomised controlled trial. J Neuroinflammation 11:1. https://doi.org/10.1186/1742-2094-11-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Sohma T, Saito K, Sunano S (1981) Elevation of extracellular K and its potentiation of the response to vasoactive substances in the rabbit basilar artery (author’s transl). Nippon Heikatsukin Gakkai Zasshi 17:71–79

    PubMed  Article  CAS  Google Scholar 

  174. Suarez JI, Tarr RW, Selman WR (2006) Aneurysmal subarachnoid hemorrhage. N Engl J Med 354:387–396. https://doi.org/10.1056/NEJMra052732

    Article  PubMed  CAS  Google Scholar 

  175. Svendgaard NA, Brismar J, Delgado TJ, Rosengren E, Stenevi U (1986) Subarachnoid haemorrhage in the rat: effect on the development of cerebral vasospasm of lesions in the central serotoninergic and dopaminergic systems. Stroke 17:86–90

    PubMed  Article  CAS  Google Scholar 

  176. Szabo C, Emilsson K, Hardebo JE, Nystedt S, Owman C (1992) Uptake and release of serotonin in rat cerebrovascular nerves after subarachnoid hemorrhage. Stroke 23:54–61

    PubMed  Article  CAS  Google Scholar 

  177. Takeuchi H, Tanabe M, Okamoto H, Yamazaki M (1999) Effects of thromboxane synthetase inhibitor (RS-5186) on experimentally-induced cerebral vasospasm. Neurol Res 21:513–516

    PubMed  Article  CAS  Google Scholar 

  178. Tanaka Y, Chiba S (1988) Potentiating effects of extraluminal oxyhemoglobin to intraluminal 5-hydroxytryptamine in isolated canine internal carotid arteries. J Neurosurg 69:263–268

    PubMed  Article  CAS  Google Scholar 

  179. Tanaka Y, Kassell NF, Torner JC (1989) Effects of subarachnoid hemorrhage on platelet-derived vasoconstriction of rabbit basilar artery. Surg Neurol 32:439–444

    PubMed  Article  CAS  Google Scholar 

  180. Tanaka Y, Machi T, Nihei H, Kassell NF (1991) Effect of subarachnoid hemorrhage on serotonin uptake and release in the rabbit basilar artery. Neurosurgery 28:387–392

    PubMed  Article  CAS  Google Scholar 

  181. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0 s that spur autophagy and immunity. Immunol Rev 249:158–175. https://doi.org/10.1111/j.1600-065X.2012.01146.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Toda N, Kawakami M, Yoshida K (1991) Constrictor action of oxyhemoglobin in monkey and dog basilar arteries in vivo and in vitro. Am J Physiol 260:H420–H425

    PubMed  CAS  Google Scholar 

  183. Tran Dinh YR, Roche S, Debdi M, Seylaz J, Sercombe R (1998) Effects of oxyhemoglobin in vitro in cerebral arteries from normal animals and animals subject to subarachnoid hemorrhage or indomethacin treatment. Brain Res 790:91–97

    PubMed  Article  CAS  Google Scholar 

  184. Tsuji T, Cook DA (1996) Effect of ketanserin on 5-hydroxytryptamine-induced constriction in isolated, perfused canine basilar arteries exposed to blood. Acta Neurochir 138:1109–1116

    PubMed  Article  CAS  Google Scholar 

  185. Vecchione C et al (2009) Tumor necrosis factor-alpha mediates hemolysis-induced vasoconstriction and the cerebral vasospasm evoked by subarachnoid hemorrhage. Hypertension 54:150–156. https://doi.org/10.1161/HYPERTENSIONAHA.108.128124

    Article  PubMed  CAS  Google Scholar 

  186. Vergouwen MD et al (2010) Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 41:2391–2395. https://doi.org/10.1161/STROKEAHA.110.589275

    Article  PubMed  Google Scholar 

  187. Vikman P, Beg S, Khurana TS, Hansen-Schwartz J, Edvinsson L (2006) Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat. J Neurosurg 105:438–444

    PubMed  Article  CAS  Google Scholar 

  188. Vikman P, Ansar S, Edvinsson L (2007) Transcriptional regulation of inflammatory and extracellular matrix-regulating genes in cerebral arteries following experimental subarachnoid hemorrhage in rats. Laboratory investigation. J Neurosurg 107:1015–1022

    PubMed  Article  CAS  Google Scholar 

  189. Vollmer DG, Hongo K, Ogawa H, Tsukahara T, Kassell NF (1991) A study of the effectiveness of the iron-chelating agent deferoxamine as vasospasm prophylaxis in a rabbit model of subarachnoid hemorrhage. Neurosurgery 28:27–32

    PubMed  Article  CAS  Google Scholar 

  190. Wakade C, King MD, Laird MD, Alleyne CH Jr, Dhandapani KM (2009) Curcumin attenuates vascular inflammation and cerebral vasospasm after subarachnoid hemorrhage in mice. Antioxid Redox Signal 11:35–45. https://doi.org/10.1089/ars.2008.2056

    Article  PubMed  CAS  Google Scholar 

  191. Walker V, Pickard JD, Smythe P, Eastwood S, Perry S (1983) Effects of subarachnoid haemorrhage on intracranial prostaglandins. J Neurol Neurosurg Psychiatry 46:119–125

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  192. Wang Z, Chen G, Zhu W-W, Zhou D (2010) Activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the basilar artery after subarachnoid hemorrhage in rats. Ann Clin Lab Sci 40:233–239

    PubMed  CAS  Google Scholar 

  193. Wang Z, Wu L, You W, Ji C, Chen G (2013) Melatonin alleviates secondary brain damage and neurobehavioral dysfunction after experimental subarachnoid hemorrhage: possible involvement of TLR4-mediated inflammatory pathway. J Pineal Res 55:399–408. https://doi.org/10.1111/jpi.12087

    Article  PubMed  CAS  Google Scholar 

  194. Wang C-x et al (2015) Baincalein alleviates early brain injury after experimental subarachnoid hemorrhage in rats: possible involvement of TLR4/NF-kappaB-mediated inflammatory pathway. Brain Res 1594:245–255. https://doi.org/10.1016/j.brainres.2014.10.014

    Article  PubMed  CAS  Google Scholar 

  195. Watanabe T, Asano T, Shimizu T, Seyama Y, Takakura K (1988) Participation of lipoxygenase products from arachidonic acid in the pathogenesis of cerebral vasospasm. J Neurochem 50:1145–1150

    PubMed  Article  CAS  Google Scholar 

  196. Watanabe Y, Faraci FM, Heistad DD (2005) Activation of Rho-associated kinase during augmented contraction of the basilar artery to serotonin after subarachnoid hemorrhage. Am J Physiol 288:2653

    Google Scholar 

  197. Wei S et al (2017) Erythropoietin ameliorates early brain injury after subarachnoid haemorrhage by modulating microglia polarization via the EPOR/JAK2-STAT3 pathway. Exp Cell Res 361:342–352. https://doi.org/10.1016/j.yexcr.2017.11.002

    Article  PubMed  CAS  Google Scholar 

  198. White RP, Chapleau CE, Dugdale M, Robertson JT (1980) Cerebral arterial contractions induced by human and bovine thrombin. Stroke 11:363–368

    PubMed  Article  CAS  Google Scholar 

  199. Wickman G, Lan C, Vollrath B (2003) Functional roles of the rho/rho kinase pathway and protein kinase C in the regulation of cerebrovascular constriction mediated by hemoglobin: relevance to subarachnoid hemorrhage and vasospasm. Circ Res 92:809–816. https://doi.org/10.1161/01.res.0000066663.12256.b2

    Article  PubMed  CAS  Google Scholar 

  200. Wu Y, Zhao X-D, Zhuang Z, Xue Y-J, Cheng H-L, Yin H-X, Shi J-X (2010) Peroxisome proliferator-activated receptor gamma agonist rosiglitazone attenuates oxyhemoglobin-induced Toll-like receptor 4 expression in vascular smooth muscle cells. Brain Res 1322:102–108. https://doi.org/10.1016/j.brainres.2010.01.073

    Article  PubMed  CAS  Google Scholar 

  201. Wu LY et al (2018) Biochanin A reduces inflammatory injury and neuronal apoptosis following subarachnoid hemorrhage via suppression of the TLRs/TIRAP/MyD88/NF-kappaB pathway. Behav Neurol 2018:1960106. https://doi.org/10.1155/2018/1960106

    Article  PubMed  PubMed Central  Google Scholar 

  202. Xia D-Y, Zhang H-S, Wu L-Y, Zhang X-S, Zhou M-L, Hang C-H (2017) Pentoxifylline alleviates early brain injury after experimental subarachnoid hemorrhage in rats: possibly via inhibiting TLR 4/NF-kappaB signaling pathway. Neurochem Res 42:963–974. https://doi.org/10.1007/s11064-016-2129-0

    Article  PubMed  CAS  Google Scholar 

  203. Xin ZL, Wu XK, Xu JR, Li X (2010) Arachnoid cell involvement in the mechanism of coagulation-initiated inflammation in the subarachnoid space after subarachnoid hemorrhage. J Zhejiang Univ Sci B 11:516–523. https://doi.org/10.1631/jzus.B1000099

    Article  PubMed  PubMed Central  Google Scholar 

  204. Yagi K et al (2015) Therapeutically targeting tumor necrosis factor-alpha/sphingosine-1-phosphate signaling corrects myogenic reactivity in subarachnoid hemorrhage. Stroke 46:2260–2270. https://doi.org/10.1161/STROKEAHA.114.006365

    Article  PubMed  CAS  Google Scholar 

  205. Yakubu MA, Leffler CW (1997) 5-Hydroxytryptamine-induced vasoconstriction after cerebral hematoma in piglets. Pediatr Res 41:317–320

    PubMed  Article  CAS  Google Scholar 

  206. Yatsushige H, Yamaguchi M, Zhou C, Calvert JW, Zhang JH (2005) Role of c-Jun N-terminal kinase in cerebral vasospasm after experimental subarachnoid hemorrhage. Stroke 36:1538–1543

    PubMed  Article  CAS  Google Scholar 

  207. Ye ZN et al (2018) Inhibition of leukotriene B4 synthesis protects against early brain injury possibly via reducing the neutrophil-generated inflammatory response and oxidative stress after subarachnoid hemorrhage in rats. Behav Brain Res 339:19–27. https://doi.org/10.1016/j.bbr.2017.11.011

    Article  PubMed  CAS  Google Scholar 

  208. Yin J et al (2016) Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: possible involvement of G protein-coupled receptor 120/beta-arrestin2/TGF-beta activated kinase-1 binding protein-1 signaling pathway. Int J Biochem Cell Biol 75:11–22. https://doi.org/10.1016/j.biocel.2016.03.008

    Article  PubMed  CAS  Google Scholar 

  209. Yokota M, Tani E, Maeda Y (1989) Biosynthesis of leukotrienes in canine cerebral vasospasm. Stroke 20:527–533

    PubMed  Article  CAS  Google Scholar 

  210. Yokota M, Tani E, Fukumori T, Maeda Y, Yamaura I (1991) Effects of subarachnoid hemorrhage and a thromboxane A2 synthetase inhibitor on intracranial prostaglandins. Surg Neurol 35:345–349

    PubMed  Article  CAS  Google Scholar 

  211. You W-C et al (2013) Activation of nuclear factor-kappaB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury. PLoS ONE 8:e60290. https://doi.org/10.1371/journal.pone.0060290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. You W, Wang Z, Li H, Shen H, Xu X, Jia G, Chen G (2016) Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats. J Neurol Sci 367:224–231. https://doi.org/10.1016/j.jns.2016.06.021

    Article  PubMed  CAS  Google Scholar 

  213. Young HA, Kolbeck RC, Schmidek HH (1986) Hemorrhage-induced alterations of rabbit basilar artery reactivity and sensitivity to serotonin. Neurosurgery 19:502–506

    PubMed  Article  CAS  Google Scholar 

  214. Zervas NT, Kuwayama A, Rosoff CB, Salzman EW (1973) Cerebral arterial spasm. Modification by inhibition of platelet function. Arch Neurol 28:400–404

    PubMed  Article  CAS  Google Scholar 

  215. Zervas NT, Hori H, Rosoff CB (1974) Experimental inhibition of serotonin by antibiotic: prevention of cerebral vasospasm. J Neurosurg 41:59–62

    PubMed  Article  CAS  Google Scholar 

  216. Zhang Z, Nagata I, Kikuchi H, Xue JH, Sakai N, Sakai H, Yanamoto H (2001) Broad-spectrum and selective serine protease inhibitors prevent expression of platelet-derived growth factor-BB and cerebral vasospasm after subarachnoid hemorrhage: vasospasm caused by cisternal injection of recombinant platelet-derived growth factor-BB. Stroke 32:1665–1672. https://doi.org/10.1161/01.str.32.7.1665

    Article  PubMed  CAS  Google Scholar 

  217. Zhang T, Su J, Guo B, Zhu T, Wang K, Li X (2014a) Ursolic acid alleviates early brain injury after experimental subarachnoid hemorrhage by suppressing TLR4-mediated inflammatory pathway. Int Immunopharmacol 23:585–591

    PubMed  Article  CAS  Google Scholar 

  218. Zhang X-S et al (2014b) Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J Surg Res 192:206–213. https://doi.org/10.1016/j.jss.2014.05.029

    Article  PubMed  CAS  Google Scholar 

  219. Zhang B-f et al (2015a) Etanercept alleviates early brain injury following experimental subarachnoid hemorrhage and the possible role of tumor necrosis factor-alpha and c-Jun N-terminal kinase pathway. Neurochem Res 40:591–599. https://doi.org/10.1007/s11064-014-1506-9

    Article  PubMed  CAS  Google Scholar 

  220. Zhang D et al (2015b) TGFbeta-activated kinase 1 (TAK1) inhibition by 5Z-7-oxozeaenol attenuates early brain injury after experimental subarachnoid hemorrhage. J Biol Chem 290:19900–19909. https://doi.org/10.1074/jbc.M115.636795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Zhang J, Xu X, Zhou D, Li H, You W, Wang Z, Chen G (2015c) Possible role of Raf-1 kinase in the development of cerebral vasospasm and early brain injury after experimental subarachnoid hemorrhage in rats. Mol Neurobiol 52:1527–1539. https://doi.org/10.1007/s12035-014-8939-7

    Article  PubMed  CAS  Google Scholar 

  222. Zhang T, Su J, Guo B, Wang K, Li X, Liang G (2015d) Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats. Int Immunopharmacol 28:79–87. https://doi.org/10.1016/j.intimp.2015.05.024

    Article  PubMed  CAS  Google Scholar 

  223. Zhang X-S et al (2016a) Resveratrol Attenuates Acute Inflammatory Injury in Experimental Subarachnoid Hemorrhage in Rats via Inhibition of TLR4 Pathway. Int J Mol Sci. https://doi.org/10.3390/ijms17081331

    Article  PubMed  PubMed Central  Google Scholar 

  224. Zhang X-S et al (2016b) Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis 7:e2416. https://doi.org/10.1038/cddis.2016.292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Zhang XS et al (2016c) Resveratrol attenuates acute inflammatory injury in experimental subarachnoid hemorrhage in rats via inhibition of TLR4 pathway. Int J Mol Sci 17:12. https://doi.org/10.3390/ijms17081331

    Article  CAS  Google Scholar 

  226. Zhang X et al (2017) Resveratrol attenuates early brain injury after experimental subarachnoid hemorrhage via inhibition of NLRP3 inflammasome activation. Front Neurosci 11:611. https://doi.org/10.3389/fnins.2017.00611

    Article  PubMed  PubMed Central  Google Scholar 

  227. Zhao X-D et al (2010) Expression of NF-E2-related factor 2 (Nrf2) in the basilar artery after experimental subarachnoid hemorrhage in rabbits: a preliminary study. Brain Res 1358:221–227. https://doi.org/10.1016/j.brainres.2010.08.035

    Article  PubMed  CAS  Google Scholar 

  228. Zhao XD, Zhou YT, Lu XJ (2013) Sulforaphane enhances the activity of the Nrf2-ARE pathway and attenuates inflammation in OxyHb-induced rat vascular smooth muscle cells. Inflamm Res 62:857–863. https://doi.org/10.1007/s00011-013-0641-0

    Article  PubMed  CAS  Google Scholar 

  229. Zhao XD, Mao HY, Lv J, Lu XJ (2016) Expression of high-mobility group box-1 (HMGB1) in the basilar artery after experimental subarachnoid hemorrhage. J Clin Neurosci 27:161–165. https://doi.org/10.1016/j.jocn.2015.06.034

    Article  PubMed  CAS  Google Scholar 

  230. Zhao L et al (2017a) Melatonin attenuates early brain injury via the melatonin receptor/Sirt1/NF-kappaB signaling pathway following subarachnoid hemorrhage in mice. Mol Neurobiol 54:1612–1621. https://doi.org/10.1007/s12035-016-9776-7

    Article  PubMed  CAS  Google Scholar 

  231. Zhao Q et al (2017b) Thioredoxin-interacting protein links endoplasmic reticulum stress to inflammatory brain injury and apoptosis after subarachnoid haemorrhage. J Neuroinflamm 14:104. https://doi.org/10.1186/s12974-017-0878-6

    Article  CAS  Google Scholar 

  232. Zhou ML et al (2007) Potential contribution of nuclear factor-kappaB to cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. J Cereb Blood Flow Metab 27:1583–1592

    PubMed  Article  CAS  Google Scholar 

  233. Zhou K et al (2017) RIP1-RIP3-DRP1 pathway regulates NLRP3 inflammasome activation following subarachnoid hemorrhage. Exp Neurol 295:116–124. https://doi.org/10.1016/j.expneurol.2017.06.003

    Article  PubMed  CAS  Google Scholar 

  234. Zubkov AY, Ogihara K, Tumu P, Mandybur GD, Lewis AI, Parent AD, Zhang JH (1999) Bloody cerebrospinal fluid alters contractility of cultured arteries. Neurol Res 21:553–558

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors of the manuscript would like to acknowledge Janice Kung (librarian) for her guidance in the literature search process for this review.

Funding

There is no funding associated with this work.

Author information

Affiliations

Authors

Contributions

SHM had the idea of the article and designed search strategy. KK and AH performed the literature search and data abstraction and summarization. All authors confirmed data collected and search and wrote the manuscript.

Corresponding author

Correspondence to Sherif Hanafy Mahmoud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khey, K.M.W., Huard, A. & Mahmoud, S.H. Inflammatory Pathways Following Subarachnoid Hemorrhage. Cell Mol Neurobiol 40, 675–693 (2020). https://doi.org/10.1007/s10571-019-00767-4

Download citation

Keywords

  • Subarachnoid hemorrhage
  • Inflammation
  • Vasospasm
  • Ruptured aneurysm
  • Delayed cerebral ischemia