Cannabinoid CB2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells

Abstract

Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor that has neuroprotective and anti-inflammatory effects, regulating more than 250 genes. As NRF2, cannabinoid receptor type 2 (CB2) is also implicated in the preservation of neurons against glia-driven inflammation. To this concern, little is known about the regulation pathways implicated in CB2 receptor expression. In this study, we analyze whether NRF2 could modulate the transcription of CB2 in neuronal and microglial cells. Bioinformatics analysis revealed an antioxidant response element in the promoter sequence of the CB2 receptor gene. Further analysis by chemical and genetic manipulations of this transcription factor demonstrated that NRF2 is not able to modulate the expression of CB2 in neurons. On the other hand, at the level of microglia, the expression of CB2 is NRF2-dependent. These results are related to the differential levels of expression of both genes regarding the brain cell type. Since modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neurodegeneration, our findings will contribute to disclose the potential of CB2 as a novel target for treating different pathologies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andersen MC, Engstrom PG, Lithwick S, Arenillas D, Eriksson P, Lenhard B, Wasserman WW, Odeberg J (2008) In silico detection of sequence variations modifying transcriptional regulation. PLoS Comput Biol 4(1):e5. https://doi.org/10.1371/journal.pcbi.0040005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Burnside SW, Hardingham GE (2017) Transcriptional regulators of redox balance and other homeostatic processes with the potential to alter neurodegenerative disease trajectory. Biochem Soc Trans 45(6):1295–1303. https://doi.org/10.1042/bst20170013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Cakir M, Tekin S, Doganyigit Z, Erden Y, Soyturk M, Cigremis Y, Sandal S (2019) Cannabinoid type 2 receptor agonist JWH-133, attenuates Okadaic acid induced spatial memory impairment and neurodegeneration in rats. Life Sci 217:25–33. https://doi.org/10.1016/j.lfs.2018.11.058

    CAS  Article  PubMed  Google Scholar 

  4. Cassano T, Calcagnini S, Pace L, De Marco F, Romano A, Gaetani S (2017) Cannabinoid receptor 2 signaling in neurodegenerative disorders: from pathogenesis to a promising therapeutic target. Front Neurosci 11:30. https://doi.org/10.3389/fnins.2017.00030

    Article  PubMed  PubMed Central  Google Scholar 

  5. Castro-Sánchez S, García-Yagüe ÁJ, Kügler S, Lastres-Becker I (2019) CX3CR1-deficient microglia shows impaired signaling of the transcription factor NRF2: implications in tauopathies. Redox Biol. https://doi.org/10.1016/j.redox.2019.101118

    Article  PubMed  PubMed Central  Google Scholar 

  6. Choi DW, Maulucci-Gedde M, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7(2):357–368

    CAS  Article  Google Scholar 

  7. Cuadrado A, Martin-Moldes Z, Ye J, Lastres-Becker I (2014) Transcription factors NRF2 and NF-kappaB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 289(22):15244–15258. https://doi.org/10.1074/jbc.M113.540633

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Cuadrado A, Kugler S, Lastres-Becker I (2018a) Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biol 14:522–534. https://doi.org/10.1016/j.redox.2017.10.010

    CAS  Article  PubMed  Google Scholar 

  9. Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, Leon R, Lopez MG, Oliva B, Pajares M, Rojo AI, Robledinos-Anton N, Valverde AM, Guney E, Schmidt H (2018b) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70(2):348–383. https://doi.org/10.1124/pr.117.014753

    CAS  Article  PubMed  Google Scholar 

  10. Dhopeshwarkar A, Mackie K (2014a) CB2 cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 86(4):430–437. https://doi.org/10.1124/mol.114.094649

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Dhopeshwarkar A, Mackie K (2014b) CB2 cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 86(4):430–437. https://doi.org/10.1124/mol.114.094649

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Di Marzo V (2018) New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 17(9):623–639. https://doi.org/10.1038/nrd.2018.115

    CAS  Article  PubMed  Google Scholar 

  13. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(741):57–74. https://doi.org/10.1038/nature11247

    CAS  Article  Google Scholar 

  14. Espejo-Porras F, Garcia-Toscano L, Rodriguez-Cueto C, Santos-Garcia I, de Lago E, Fernandez-Ruiz J (2019) Targeting glial cannabinoid CB2 receptors to delay the progression of the pathological phenotype in TDP-43 (A315T) transgenic mice, a model of amyotrophic lateral sclerosis. Br J Pharmacol 176(10):1585–1600. https://doi.org/10.1111/bph.14216

    CAS  Article  PubMed  Google Scholar 

  15. Gomez-Galvez Y, Palomo-Garo C, Fernandez-Ruiz J, Garcia C (2016) Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 64:200–208. https://doi.org/10.1016/j.pnpbp.2015.03.017

    CAS  Article  PubMed  Google Scholar 

  16. Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4):199–218. https://doi.org/10.1016/j.tibs.2014.02.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Hirotsu Y, Katsuoka F, Funayama R, Nagashima T, Nishida Y, Nakayama K, Engel JD, Yamamoto M (2012) Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res 40(20):10228–10239. https://doi.org/10.1093/nar/gks827

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Hu SS, Mackie K (2015) Distribution of the endocannabinoid system in the central nervous system. Handb Exp Pharmacol 231:59–93. https://doi.org/10.1007/978-3-319-20825-1_3

    CAS  Article  PubMed  Google Scholar 

  19. Innamorato NG, Lastres-Becker I, Cuadrado A (2009) Role of microglial redox balance in modulation of neuroinflammation. Curr Opin Neurol 22(3):308–314. https://doi.org/10.1097/WCO.0b013e32832a3225

    CAS  Article  PubMed  Google Scholar 

  20. Itoh K, Igarashi K, Hayashi N, Nishizawa M, Yamamoto M (1995) Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol 15(8):4184–4193

    CAS  Article  Google Scholar 

  21. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    CAS  Article  Google Scholar 

  22. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1):76–86

    CAS  Article  Google Scholar 

  23. Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernandez-Ruiz J, Cuadrado A (2011) Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal 14(12):2347–2360. https://doi.org/10.1089/ars.2010.3731

    CAS  Article  PubMed  Google Scholar 

  24. Jordan CJ, Xi ZX (2019) Progress in brain cannabinoid CB2 receptor research: from genes to behavior. Neurosci Biobehav Rev 98:208–220. https://doi.org/10.1016/j.neubiorev.2018.12.026

    CAS  Article  PubMed  Google Scholar 

  25. Kwon AT, Arenillas DJ, WorsleyHunt R, Wasserman WW (2012) oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets. G3 (Bethesda, Md) 2(9):987–1002. https://doi.org/10.1534/g3.112.003202

    CAS  Article  Google Scholar 

  26. Lastres-Becker I (2017) Role of the transcription factor Nrf2 in Parkinson’s disease: new Insights. J Alzheimers Dis Parkinsonism 7(4):9. https://doi.org/10.4172/2161-0460.1000340

    Article  Google Scholar 

  27. Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rabano A, Kirik D, Cuadrado A (2012) alpha-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 21(14):3173–3192. https://doi.org/10.1093/hmg/dds143

    CAS  Article  PubMed  Google Scholar 

  28. Lastres-Becker I, Innamorato NG, Jaworski T, Rabano A, Kugler S, Van Leuven F, Cuadrado A (2014) Fractalkine activates NRF2/NFE2L2 and heme oxygenase 1 to restrain tauopathy-induced microgliosis. Brain 137(Pt 1):78–91. https://doi.org/10.1093/brain/awt323

    Article  PubMed  Google Scholar 

  29. Lastres-Becker I, Garcia-Yague AJ, Scannevin RH, Casarejos MJ, Kugler S, Rabano A, Cuadrado A (2016) Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid Redox Signal 25(2):61–77. https://doi.org/10.1089/ars.2015.6549

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Kim J (2015) Neuronal expression of CB2 cannabinoid receptor mRNAs in the mouse hippocampus. Neuroscience 311:253–267. https://doi.org/10.1016/j.neuroscience.2015.10.041

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Kim J (2017) Distinct roles of neuronal and microglial CB2 cannabinoid receptors in the mouse hippocampus. Neuroscience 363:11–25. https://doi.org/10.1016/j.neuroscience.2017.08.053

    CAS  Article  PubMed  Google Scholar 

  32. Lopez A, Aparicio N, Pazos MR, Grande MT, Barreda-Manso MA, Benito-Cuesta I, Vazquez C, Amores M, Ruiz-Perez G, Garcia-Garcia E, Beatka M, Tolon RM, Dittel BN, Hillard CJ, Romero J (2018) Cannabinoid CB2 receptors in the mouse brain: relevance for Alzheimer’s disease. J Neuroinflamm 15(1):158. https://doi.org/10.1186/s12974-018-1174-9

    CAS  Article  Google Scholar 

  33. Ma L, Niu W, Lv J, Jia J, Zhu M, Yang S (2018) PGC-1alpha-mediated mitochondrial biogenesis is involved in cannabinoid receptor 2 agonist AM1241-induced microglial phenotype amelioration. Cell Mol Neurobiol 38(8):1529–1537. https://doi.org/10.1007/s10571-018-0628-z

    CAS  Article  PubMed  Google Scholar 

  34. Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen CY, Chou A, Ienasescu H, Lim J, Shyr C, Tan G, Zhou M, Lenhard B, Sandelin A, Wasserman WW (2014) JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42(Database Issue):D142–D147. https://doi.org/10.1093/nar/gkt997

    CAS  Article  PubMed  Google Scholar 

  35. McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278(24):21592–21600. https://doi.org/10.1074/jbc.M300931200

    CAS  Article  PubMed  Google Scholar 

  36. Navarro G, Morales P, Rodriguez-Cueto C, Fernandez-Ruiz J, Jagerovic N, Franco R (2016) Targeting cannabinoid CB2 receptors in the central nervous system. Medicinal chemistry approaches with focus on neurodegenerative disorders. Front Neurosci 10:406. https://doi.org/10.3389/fnins.2016.00406

    Article  PubMed  PubMed Central  Google Scholar 

  37. Onaivi ES, Ishiguro H, Gu S, Liu QR (2012) CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity. J Psychopharmacol 26(1):92–103. https://doi.org/10.1177/0269881111400652

    CAS  Article  PubMed  Google Scholar 

  38. Pajares M, Jimenez-Moreno N, Garcia-Yague AJ, Escoll M, de Ceballos ML, Van Leuven F, Rabano A, Yamamoto M, Rojo AI, Cuadrado A (2016) Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 12(10):1902–1916. https://doi.org/10.1080/15548627.2016.1208889

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, Sagredo O, Benito C, Romero J, Azcoitia I, Fernandez-Ruiz J, Guzman M, Galve-Roperh I (2009) Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132(Pt 11):3152–3164. https://doi.org/10.1093/brain/awp239

    Article  PubMed  Google Scholar 

  40. Robledinos-Anton N, Rojo AI, Ferreiro E, Nunez A, Krause KH, Jaquet V, Cuadrado A (2017) Transcription factor NRF2 controls the fate of neural stem cells in the subgranular zone of the hippocampus. Redox Biol 13:393–401. https://doi.org/10.1016/j.redox.2017.06.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Rojo AI, Innamorato NG, Martin-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A (2010) Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58(5):588–598. https://doi.org/10.1002/glia.20947

    Article  PubMed  Google Scholar 

  42. Rojo AI, Pajares M, Rada P, Nunez A, Nevado-Holgado AJ, Killik R, Van Leuven F, Ribe E, Lovestone S, Yamamoto M, Cuadrado A (2017) NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology. Redox Biol 13:444–451. https://doi.org/10.1016/j.redox.2017.07.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Rojo AI, Pajares M, Garcia-Yague AJ, Buendia I, Van Leuven F, Yamamoto M, Lopez MG, Cuadrado A (2018) Deficiency in the transcription factor NRF2 worsens inflammatory parameters in a mouse model with combined tauopathy and amyloidopathy. Redox Biol 18:173–180. https://doi.org/10.1016/j.redox.2018.07.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Sagredo O, Gonzalez S, Aroyo I, Pazos MR, Benito C, Lastres-Becker I, Romero JP, Tolon RM, Mechoulam R, Brouillet E, Romero J, Fernandez-Ruiz J (2009) Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington’s disease. Glia 57(11):1154–1167. https://doi.org/10.1002/glia.20838

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD (2019) Redox regulation by NRF2 in aging and disease. Free Radic Biol Med 20:19. https://doi.org/10.1016/j.freeradbiomed.2019.01.016

    CAS  Article  Google Scholar 

  46. Soethoudt M, Grether U, Fingerle J, Grim TW, Fezza F, de Petrocellis L, Ullmer C, Rothenhausler B, Perret C, van Gils N, Finlay D, MacDonald C, Chicca A, Gens MD, Stuart J, de Vries H, Mastrangelo N, Xia L, Alachouzos G, Baggelaar MP, Martella A, Mock ED, Deng H, Heitman LH, Connor M, Di Marzo V, Gertsch J, Lichtman AH, Maccarrone M, Pacher P, Glass M, van der Stelt M (2017) Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun 8:13958. https://doi.org/10.1038/ncomms13958

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Turcotte C, Blanchet MR, Laviolette M, Flamand N (2016) The CB2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci CMLS 73(23):4449–4470. https://doi.org/10.1007/s00018-016-2300-4

    CAS  Article  PubMed  Google Scholar 

  48. Vilhardt F, Haslund-Vinding J, Jaquet V, McBean G (2017) Microglia antioxidant systems and redox signalling. Br J Pharmacol 174(12):1719–1732. https://doi.org/10.1111/bph.13426

    CAS  Article  PubMed  Google Scholar 

  49. Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43(4):621–626. https://doi.org/10.1042/BST20150014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Wu J, Hocevar M, Foss JF, Bie B, Naguib M (2017) Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer’s disease. Eur J Pharmacol 811:12–20. https://doi.org/10.1016/j.ejphar.2017.05.044

    CAS  Article  PubMed  Google Scholar 

  51. Zanettini C, Panlilio LV, Alicki M, Goldberg SR, Haller J, Yasar S (2011) Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front Behav Neurosci 5:57. https://doi.org/10.3389/fnbeh.2011.00057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947. https://doi.org/10.1523/jneurosci.1860-14.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Spanish Ministry of Economy and Competitiveness (Grants Refs. SAF2016-76520-R to ILB and BFU2016-75973-R to MDG).

Author information

Affiliations

Authors

Contributions

ILB and MDG contributed to conception and design of the study. MGG, RdR, and ILB acquisition and analysis of data. NJM contributed with the bioinformatics analysis. ILB contributed to drafting the manuscript and figures.

Corresponding author

Correspondence to I. Lastres-Becker.

Ethics declarations

Ethical Approval

All experiments were performed by certified researchers according to regional, national, and European regulations concerning animal welfare and animal experimentation, and were authorized by the Ethics Committee for Research of the Universidad Autónoma de Madrid and the Comunidad Autónoma de Madrid, Spain, with Ref PROEX 279/14 and Ref PROEX 221/14, following institutional, Spanish and European guidelines (Boletín Oficial del Estado (BOE) of 18 March 1988 and 86/609/EEC, 2003/65/EC European Council Directives). The housing facilities at the Institute were approved by Comunidad de Madrid (# ES 280790000188) and comply with official regulations.

Conflict of interest

None of the authors has a conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galán-Ganga, M., del Río, R., Jiménez-Moreno, N. et al. Cannabinoid CB2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells. Cell Mol Neurobiol 40, 167–177 (2020). https://doi.org/10.1007/s10571-019-00719-y

Download citation

Keywords

  • CB2 receptor
  • NRF2
  • Microglia
  • Neuron
  • Brain
  • Dimethyl fumarate (DMF)