Skip to main content

Advertisement

Log in

Hypoxia Regulated Gene Network in Glioblastoma Has Special Algebraic Topology Structures and Revealed Communications Involving Warburg Effect and Immune Regulation

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypoxia regulated genes (HRGs) formed a complex molecular interaction network (MINW), contributing to many aspects of glioblastoma (GBM) tumor biology. However, little is known about the intrinsic structures of the HRGs–MINW, mainly due to a lack of analysis tools to decipher MINWs. By introducing general hyper-geometric distribution, we obtained a statistically reliable gene set of HRGs (SR-HRGs) from several datasets. Next, MINWs were reconstructed from several independent GBM expression datasets. Algebraic topological analysis was performed to quantitatively analyze the amount of equivalence classes of cycles in various dimensions by calculating the Betti numbers. Persistent homology analysis of a filtration of growing networks was further performed to examine robust topological structures in the network by investigating the Betti curves, life length of the cycles. Random networks with the same number of node and edge and degree distribution were produced as controls. As a result, GBM–HRGs–MINWs reconstructed from different datasets exhibited great consistent Betti curves to each other, which were significantly different from that of random networks. Furthermore, HRGs–MINWs reconstructed from normal brain expression datasets exhibited topological structures significantly different from that of GBM–HRGs–MINWs. Analysis of cycles in GBM–HRGs–MINWs revealed genes that had clinical implications, and key parts of the cycles were also identified in reconstructed protein–protein interaction networks. In addition, the cycles are composed by genes involved in the Warburg effect, immune regulation, and angiogenesis. In summary, GBM–HRGs–MINWs contained abundant molecular interacting cycles in different dimensions, which are composed by genes involved in multiple programs essential for the tumorigenesis of GBM, revealing novel interaction diagrams in GBM and providing novel potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARACNe:

Algorithm for the reconstruction of accurate cellular networks

CI:

Confidential interval

CSC:

Cancer stem cell

DD:

Degree distribution

DPI:

Data processing inequality

D gene :

Connectivity degree of the gene

GBM:

Glioblastoma

GBM–HRGs–MINWs:

Molecular interaction network of hypoxia regulated gene reconstructed from GBM expression datasets

GSCs:

Glioblastoma stem like cells

HRGs:

Hypoxia regulated genes

MI:

Mutual information

MINW:

Molecular interaction network

N edge :

Number of edges

N node :

Number of nodes

NCgene :

Number of cycles involved for a gene

NCq-clique :

Number of cycles involved for a q dimensional clique (or simplex)

Normal-HRGs–MINWs:

Molecular interaction network of hypoxia regulated gene reconstructed from normal brain expression datasets

NSC:

Neural stem cells

PH:

Persistent homology

PPI:

Protein–protein interaction

PPI–MINWs:

Protein–protein interaction MINWs

PPI–HRGs–MINWs:

PPI–MINWs reconstructed with the HRGs

q-simplex:

q dimensional simplex (fully connected (q + 1) nodes)

q-cycle:

q dimensional cycle

q-sig-cycle:

q dimensional cycle whose life is statistically long (longer than the 95% bound of q-cycle life in random-MINWs)

q-end-cycles:

q dimensional cycle in the end point of filtration

RandomExp:

Random gene expression datasets

RandomSameDD-MINWs:

Random-MINWs with the same degree distribution (DD) to the corresponding MINWs

SR-HRGs:

Statistically reliable gene set of HRGs

SRExp:

Rank values ordered by expression levels for each gene

sub-cycles-3genes:

Sub-cycles containing three genes that are presented in both GBM–HRG–MINWs and PPI–HRGs–MINW

TF:

Transcription factor

Up-HRGs:

Up-regulated HRGs

References

  • Adams H, Tausz A, Vejdemo-Johansson M (2014) javaPlex: a research software package for persistent (Co) homology. Springer, Berlin

    Google Scholar 

  • Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390

    Article  CAS  Google Scholar 

  • Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, Beach T, Miller C, Troncoso J, Trojanowski JQ, Zielke HR, Cotman CW (2008) Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci USA 105:15605–15610

    Article  CAS  Google Scholar 

  • Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L, Network TR (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  Google Scholar 

  • Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, Lasorella A, Aldape K, Califano A, Iavarone A (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318–325

    Article  CAS  Google Scholar 

  • Chen JC, Alvarez MJ, Talos F, Dhruv H, Rieckhof GE, Iyer A, Diefes KL, Aldape K, Berens M, Shen MM, Califano A (2014) Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell 159:402–414

    Article  CAS  Google Scholar 

  • Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discret Comput Geom 37:103–120

    Article  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Book  Google Scholar 

  • Curto C (2016) What can topology tell us about the neural code? arXiv:160501905

    Article  Google Scholar 

  • Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S, Samghababi P, Zhang Y, Neff N, Kowarsky M, Caneda C, Li G, Chang SD, Connolly ID, Li Y, Barres BA, Gephart MH, Quake SR (2017) Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 21:1399–1410

    Article  CAS  Google Scholar 

  • Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    Article  CAS  Google Scholar 

  • Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL, Arepalli S, Dillman A, Rafferty IP, Troncoso J, Johnson R, Zielke HR, Ferrucci L, Longo DL, Cookson MR, Singleton AB (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 6:e1000952

    Article  Google Scholar 

  • Giusti C, Pastalkova E, Curto C, Itskov V (2015) Clique topology reveals intrinsic geometric structure in neural correlations. Proc Natl Acad Sci USA 112:13455–13460

    Article  CAS  Google Scholar 

  • Giusti C, Ghrist R, Bassett DS (2016) Two’s company, three (or more) is a simplex: algebraic-topological tools for understanding higher-order structure in neural data. J Comput Neurosci 41:1–14

    Article  Google Scholar 

  • Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE, Daemen A, Bleeker FE, Bralten LB, Kloosterhof NK, De Moor B, Eilers PH, van der Spek PJ, Kros JM, Sillevis Smitt PA, van den Bent MJ, French PJ (2009) Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69:9065–9072

    Article  CAS  Google Scholar 

  • Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meijer E, Balasubramaniyan V, Wagemakers M, den Dunnen WF, Kruyt FA (2015) Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1alpha-ZEB1 axis. Cancer Lett 359:107–116

    Article  CAS  Google Scholar 

  • Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, Dong J, Prasadha MK, Pei J, Ting MYL, Zhu J, Li C, Hewett S, Dong J, Ziyar I, Shi A, Zhang R, Zheng L, Hou R, Shi W, Fu X, Duan Y, Huu VAN, Wen C, Zhang ED, Zhang CL, Li O, Wang X, Singer MA, Sun X, Xu J, Tafreshi A, Lewis MA, Xia H, Zhang K (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(1122–1131):e1129

    Google Scholar 

  • Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG, Cantor AB, Orkin SH (2010) A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143:313–324

    Article  CAS  Google Scholar 

  • Kleaveland B, Shi CY, Stefano J, Bartel DP (2018) A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174(350–362):e317

    Google Scholar 

  • Koh MY, Lemos R Jr, Liu X, Powis G (2011) The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res 71:4015–4027

    Article  CAS  Google Scholar 

  • Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringner M, Morgelin M, Bourseau-Guilmain E, Bengzon J, Belting M (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 110:7312–7317

    Article  CAS  Google Scholar 

  • Lee Y, Scheck AC, Cloughesy TF, Lai A, Dong J, Farooqi HK, Liau LM, Horvath S, Mischel PS, Nelson SF (2008) Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age. BMC Med Genom 1:52

    Article  Google Scholar 

  • Li M, Izpisua Belmonte JC (2018) Deconstructing the pluripotency gene regulatory network. Nat Cell Biol 20:382–392

    Article  CAS  Google Scholar 

  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513

    Article  CAS  Google Scholar 

  • Li X, Jiang Y, Meisenhelder J, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, He J, Hunter T, Wang L, Lu Z (2016) Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol Cell 61:705–719

    Article  CAS  Google Scholar 

  • Li Y, Lu B, Sheng L, Zhu Z, Sun H, Zhou Y, Yang Y, Xue D, Chen W, Tian X, Du Y, Yan M, Zhu W, Xing F, Li K, Lin S, Qiu P, Su X, Huang Y, Yan G, Yin W (2018) Hexokinase 2-dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J Neurochem 144:186–200

    Article  CAS  Google Scholar 

  • Lis P, Dylag M, Niedzwiecka K, Ko YH, Pedersen PL, Goffeau A, Ulaszewski S (2016) The HK2 dependent “Warburg effect” and mitochondrial oxidative phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate. Molecules 21:1730

    Article  Google Scholar 

  • Liu J, Chen G, Liu Z, Liu S, Cai Z, You P, Ke Y, Lai L, Huang Y, Gao H, Zhao L, Pelicano H, Huang P, McKeehan WL, Wu CL, Wang C, Zhong W, Wang F (2018) Aberrant FGFR tyrosine kinase signaling enhances the Warburg effect by reprogramming LDH isoform expression and activity in prostate cancer. Cancer Res 78:4459–4470

    Article  CAS  Google Scholar 

  • Lockwood S, Krishnamoorthy B (2015) Topological features in cancer gene expression data. In: Pacific symposium on biocomputing. pp 108–119

  • Madhavan S, Zenklusen JC, Kotliarov Y, Sahni H, Fine HA, Buetow K (2009) Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol Cancer Res 7:157–167

    Article  CAS  Google Scholar 

  • Mahase S, Rattenni RN, Wesseling P, Leenders W, Baldotto C, Jain R, Zagzag D (2017) Hypoxia-mediated mechanisms associated with antiangiogenic treatment resistance in glioblastomas. Am J Pathol 187:940–953

    Article  CAS  Google Scholar 

  • Man J, Yu X, Huang H, Zhou W, Xiang C, Huang H, Miele L, Liu Z, Bebek G, Bao S, Yu JS (2018) Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell 22(104–118):e106

    Google Scholar 

  • Mao XG, Xue XY (2018) General hypergeometric distribution: a basic statistical distribution for the number of overlapped elements in multiple subsets drawn from a finite population. arXiv:1808.06924

  • Mao XG, Zhang X, Xue XY, Guo G, Wang P, Zhang W, Fei Z, Zhen HN, You SW, Yang H (2009a) Brain tumor stem-like cells identified by neural stem cell marker CD15. Transl Oncol 2:247–257

    Article  Google Scholar 

  • Mao XG, Zhang X, Zhen HN (2009b) Progress on potential strategies to target brain tumor stem cells. Cell Mol Neurobiol 29:141–155

    Article  Google Scholar 

  • Mao XG, Guo G, Wang P, Zhang X, Xue XY, Zhang W, Fei Z, Jiang XF, Yan M (2010) Maintenance of critical properties of brain tumor stem like cells after cryopreservation. Cell Mol Neurobiol 30:775–786

    Article  Google Scholar 

  • Mao XG, Yan M, Xue XY, Zhang X, Ren HG, Guo G, Wang P, Zhang W, Huo JL (2011) Overexpression of ZNF217 in glioblastoma contributes to the maintenance of glioma stem cells regulated by hypoxia-inducible factors. Lab Investig 91:1068–1078

    Article  CAS  Google Scholar 

  • Mao XG, Song SJ, Xue XY, Yan M, Wang L, Lin W, Guo G, Zhang X (2013a) LGR5 is a proneural factor and is regulated by OLIG2 in glioma stem-like cells. Cell Mol Neurobiol 36:851–865

    Article  Google Scholar 

  • Mao XG, Xue XY, Wang L, Zhang X, Yan M, Tu YY, Lin W, Jiang XF, Ren HG, Zhang W, Song SJ (2013b) CDH5 is specifically activated in glioblastoma stem like cells and contributes to vasculogenic mimicry induced by hypoxia. Neuro oncology 15:865–879

    Article  CAS  Google Scholar 

  • Mao XG, Xue XY, Wang L, Zhang X, Yan M, Tu YY, Lin W, Jiang XF, Ren HG, Zhang W, Song SJ (2013c) CDH5 is specifically activated in glioblastoma stemlike cells and contributes to vasculogenic mimicry induced by hypoxia. Neuro-oncology 15:865–879

    Article  CAS  Google Scholar 

  • Mao XG, Wang C, Liu DY, Zhang X, Wang L, Yan M, Zhang W, Zhu J, Li ZC, Mi C, Tian JY, Hou GD, Miao SY, Song ZX, Li JC, Xue XY (2016) Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma. Oncotarget 7:47808–47820

    PubMed  PubMed Central  Google Scholar 

  • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006a) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl 1):S7

    Article  Google Scholar 

  • Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman I, Califano A (2006b) Reverse engineering cellular networks. Nat Protoc 1:662–671

    Article  CAS  Google Scholar 

  • Markmiller S, Soltanieh S, Server KL, Mak R, Jin W, Fang MY, Luo EC, Krach F, Yang D, Sen A, Fulzele A, Wozniak JM, Gonzalez DJ, Kankel MW, Gao FB, Bennett EJ, Lecuyer E, Yeo GW (2018) Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172(590–604):e513

    Google Scholar 

  • Michaelsen SR, Staberg M, Pedersen H, Jensen KE, Majewski W, Broholm H, Nedergaard MK, Meulengracht C, Urup T, Villingshoj M, Lukacova S, Skjoth-Rasmussen J, Brennum J, Kjaer A, Lassen U, Stockhausen MT, Poulsen HS, Hamerlik P (2018) VEGF-C sustains VEGFR2 activation under bevacizumab therapy and promotes glioblastoma maintenance. Neuro Oncol 20:1462–1474

    Article  CAS  Google Scholar 

  • Myers AJ, Gibbs JR, Webster JA, Rohrer K, Zhao A, Marlowe L, Kaleem M, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV, Holmans P, Heward CB, Reiman EM, Stephan D, Hardy J (2007) A survey of genetic human cortical gene expression. Nat Genet 39:1494–1499

    Article  CAS  Google Scholar 

  • Nakagawa M, Shaffer AL 3rd, Ceribelli M, Zhang M, Wright G, Huang DW, Xiao W, Powell J, Petrus MN, Yang Y, Phelan JD, Kohlhammer H, Dubois SP, Yoo HM, Bachy E, Webster DE, Yang Y, Xu W, Yu X, Zhao H, Bryant BR, Shimono J, Ishio T, Maeda M, Green PL, Waldmann TA, Staudt LM (2018) Targeting the HTLV-I-regulated BATF3/IRF4 transcriptional network in adult T cell leukemia/lymphoma. Cancer Cell 34(286–297):e210

    Google Scholar 

  • Nissou MF, El Atifi M, Guttin A, Godfraind C, Salon C, Garcion E, van der Sanden B, Issartel JP, Berger F, Wion D (2013) Hypoxia-induced expression of VE-cadherin and filamin B in glioma cell cultures and pseudopalisade structures. J Neurooncol 113:239–249

    Article  CAS  Google Scholar 

  • Pathria G, Scott DA, Feng Y, Sang Lee J, Fujita Y, Zhang G, Sahu AD, Ruppin E, Herlyn M, Osterman AL, Ronai ZA (2018) Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. EMBO J 37:e99735

    Article  Google Scholar 

  • Piao Y, Liang J, Holmes L, Henry V, Sulman E, de Groot JF (2013) Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin Cancer Res 19:4392–4403

    Article  CAS  Google Scholar 

  • Plaisier CL, O’Brien S, Bernard B, Reynolds S, Simon Z, Toledo CM, Ding Y, Reiss DJ, Paddison PJ, Baliga NS (2016) Causal mechanistic regulatory network for glioblastoma deciphered using systems genetics network analysis. Cell Syst 3:172–186

    Article  CAS  Google Scholar 

  • Rizzolio S, Battistini C, Cagnoni G, Apicella M, Vella V, Giordano S, Tamagnone L (2018) Downregulating neuropilin-2 triggers a novel mechanism enabling EGFR-dependent resistance to oncogene-targeted therapies. Cancer Res 78:1058–1068

    Article  CAS  Google Scholar 

  • Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N, Eberhart CG (2010) The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 16:6060–6070

    Article  CAS  Google Scholar 

  • Shi J, Zhao J, Li T, Chen L (2018) Detecting direct associations in a network by information theoretic approaches. Sci China Math 62:823–838

    Article  Google Scholar 

  • Sizemore AE, Giusti C, Kahn A, Vettel JM, Betzel RF, Bassett DS (2018) Cliques and cavities in the human connectome. J Comput Neurosci 44:115–145

    Article  Google Scholar 

  • Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640

    Article  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  Google Scholar 

  • Tamura R, Tanaka T, Miyake K, Yoshida K, Sasaki H (2017) Bevacizumab for malignant gliomas: current indications, mechanisms of action and resistance, and markers of response. Brain Tumor Pathol 34:62–77

    Article  CAS  Google Scholar 

  • TCGA (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  Google Scholar 

  • Tiernan JC (1970) An efficient search algorithm to find the elementary circuits of a graph. Commun ACM 13:722–726

    Article  Google Scholar 

  • Urup T, Staunstrup LM, Michaelsen SR, Vitting-Seerup K, Bennedbaek M, Toft A, Olsen LR, Jonson L, Issazadeh-Navikas S, Broholm H, Hamerlik P, Poulsen HS, Lassen U (2017) Transcriptional changes induced by bevacizumab combination therapy in responding and non-responding recurrent glioblastoma patients. BMC Cancer 17:278

    Article  Google Scholar 

  • Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ (2016) The regulation and function of lactate dehydrogenase A: therapeutic potential in brain tumor. Brain Pathol 26:3–17

    Article  CAS  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  Google Scholar 

  • Walentynowicz KA, Ochocka N, Pasierbinska M, Wojnicki K, Stepniak K, Mieczkowski J, Ciechomska IA, Kaminska B (2018) In search for reliable markers of glioma-induced polarization of microglia. Front Immunol 9:1329

    Article  Google Scholar 

  • Wang K, Saito M, Bisikirska BC, Alvarez MJ, Lim WK, Rajbhandari P, Shen Q, Nemenman I, Basso K, Margolin AA, Klein U, Dalla-Favera R, Califano A (2009) Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol 27:829–839

    Article  CAS  Google Scholar 

  • Wang Q, He Z, Huang M, Liu T, Wang Y, Xu H, Duan H, Ma P, Zhang L, Zamvil SS, Hidalgo J, Zhang Z, O’Rourke DM, Dahmane N, Brem S, Mou Y, Gong Y, Fan Y (2018) Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2alpha. Nat Commun 9:559

    Article  Google Scholar 

  • Xu H, Rahimpour S, Nesvick CL, Zhang X, Ma J, Zhang M, Zhang G, Wang L, Yang C, Hong CS, Germanwala AV, Elder JB, Ray-Chaudhury A, Yao Y, Gilbert MR, Lonser RR, Heiss JD, Brady RO, Mao Y, Qin J, Zhuang Z (2015) Activation of hypoxia signaling induces phenotypic transformation of glioma cells: implications for bevacizumab antiangiogenic therapy. Oncotarget. https://doi.org/10.18632/oncotarget.3592

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (Grant Numbers: 81502143, 51675411, 81671302) and foundation of fourth military medical university (2018JSTS05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-gang Mao or Xiang Zhang.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

The study protocol was approved by the institutional review board of Xijing Hospital of the Fourth Military Medical University. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Research Involving Human Participants and/or Animals

This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Xg., Xue, Xy., Wang, L. et al. Hypoxia Regulated Gene Network in Glioblastoma Has Special Algebraic Topology Structures and Revealed Communications Involving Warburg Effect and Immune Regulation. Cell Mol Neurobiol 39, 1093–1114 (2019). https://doi.org/10.1007/s10571-019-00704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-019-00704-5

Keywords

Navigation