Agnati LF, Zoli M, Strömberg I, Fuxe K (1995) Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69:711–726
Article
CAS
PubMed
Google Scholar
Aguayo LG, Grossie J (1994) Dopamine inhibits a sustained calcium current through activation of alpha adrenergic receptors and a GTP-binding protein in adult rat sympathetic neurons. J Pharmacol Exp Ther 269:503–508
CAS
PubMed
Google Scholar
Aguirre P, Urrutia P, Tapia V et al (2012) The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals 25:795–803
Article
CAS
PubMed
Google Scholar
Altar CA, Hunt RA, Jurata LW et al (2008) Insulin, IGF-1, and muscarinic agonists modulate schizophrenia-associated genes in human neuroblastoma cells. Biol Psychiatry 64:1077–1087. https://doi.org/10.1016/j.biopsych.2008.08.031
CAS
Article
PubMed
Google Scholar
Andén N-E, Corrodi H, Dahlström A et al (1966) Effects of tyrosine hydroxylase inhibition on the amine levels of central monoamine neurons. Life Sci 5:561–568
Article
Google Scholar
Andretic R, van Swinderen B, Greenspan RJ (2005) Dopaminergic modulation of arousal in Drosophila. Curr Biol 15:1165–1175
Article
CAS
PubMed
Google Scholar
Andrews ZB, Kokay IC, Grattan DR (2001) Dissociation of prolactin secretion from tuberoinfundibular dopamine activity in late pregnant rats. Endocrinology 142:2719–2724. https://doi.org/10.1210/endo.142.6.8196
CAS
Article
PubMed
Google Scholar
Angers S, Salahpour A, Bouvier M (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 42:409–435. https://doi.org/10.1146/annurev.pharmtox.42.091701.082314
CAS
Article
PubMed
Google Scholar
Anlauf M, Schäfer MKH, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: Cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459:90–111. https://doi.org/10.1002/cne.10599
CAS
Article
PubMed
Google Scholar
Aosaki T, Kiuchi K, Kawaguchi Y (1998) Dopamine D1-like receptor activation excites rat striatal large aspiny neurons in vitro. J Neurosci 18:5180–5190
Article
CAS
PubMed
PubMed Central
Google Scholar
Aperia AC (2000) Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol 62:621–647
Article
CAS
PubMed
Google Scholar
Arbogast LA, Voogt JL (1996) The responsiveness of tuberoinfundibular dopaminergic neurons to prolactin feedback is diminished between early lactation and midlactation in the rat. Endocrinology 137:47–54. https://doi.org/10.1210/endo.137.1.8536641
CAS
Article
PubMed
Google Scholar
Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav brain Funct 1:2. https://doi.org/10.1186/1744-9081-1-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Arnt J, Scheel-Krüger J (1979) GABA in the ventral tegmental area: differential regional effects on locomotion, aggression and food intake after microinjection of GABA agonists and antagonists. Life Sci 25:1351–1360
Article
CAS
PubMed
Google Scholar
Arriagada C, Paris I, de las Matas MJS et al (2004) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiol Dis 16:468–477
Article
CAS
PubMed
Google Scholar
Arriza JL, Dawson TM, Simerly RB et al (1992) The G-protein-coupled receptor kinases beta ARK1 and beta ARK2 are widely distributed at synapses in rat brain. J Neurosci 12:4045–4055
Article
CAS
PubMed
PubMed Central
Google Scholar
Asif-Malik A, Hoener MC, Canales JJ (2017) Interaction between the trace amine-associated receptor 1 and the dopamine D2 receptor controls cocaine’s neurochemical actions. Sci Rep 7:13901
Article
CAS
PubMed
PubMed Central
Google Scholar
Aston-Jones G (2005) Brain structures and receptors involved in alertness. Sleep Med 6:S3–S7
Article
PubMed
Google Scholar
Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407
Article
CAS
PubMed
Google Scholar
Baik J-H (2013a) Dopamine Signaling in reward-related behaviors. Front Neural Circuits 7:1–16. https://doi.org/10.3389/fncir.2013.00152
CAS
Article
Google Scholar
Baik J-H (2013b) Dopamine signaling in food addiction: role of dopamine D2 receptors. BMB Rep 46:519
Article
CAS
PubMed
PubMed Central
Google Scholar
Baracskay KL, Haroutunian V, Meador-Woodruff JH (2006) Dopamine receptor signaling molecules are altered in elderly schizophrenic cortex. Synapse 60:271–279
Article
CAS
PubMed
Google Scholar
Bara-Jimenez W, Aksu M, Graham B et al (2000) Periodic limb movements in sleep state-dependent excitability of the spinal flexor reflex. Neurology 54:1609–1616
Article
CAS
PubMed
Google Scholar
Bardo MT, Donohew RL, Harrington NG (1996) Psychobiology of novelty seeking and drug seeking behavior. Behav Brain Res 77:23–43
Article
CAS
PubMed
Google Scholar
Barker RA, Parmar M, Studer L, Takahashi J (2017) Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell 21:569–573. https://doi.org/10.1016/j.stem.2017.09.014
CAS
Article
PubMed
Google Scholar
Barraud Q, Obeid I, Aubert I et al (2010) Neuroanatomical study of the A11 diencephalospinal pathway in the non-human primate. PLoS ONE 5:e13306
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartfai T, Iverfeldt K, Fisone G, Serfozo P (1988) Regulation of the release of coexisting neurotransmitters. Annu Rev Pharmacol Toxicol 28:285–310
Article
CAS
PubMed
Google Scholar
Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124
Article
CAS
PubMed
Google Scholar
Bateup HS, Svenningsson P, Kuroiwa M et al (2008) Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat Neurosci 11:932–939. https://doi.org/10.1038/nn.2153
CAS
Article
PubMed
PubMed Central
Google Scholar
Beaulieu J-M (2011) Beyond cAMP: the regulation of Akt and GSK3 by dopamine receptors. Front Mol Neurosci 4:1–13. https://doi.org/10.3389/fnmol.2011.00038
Article
Google Scholar
Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217
Article
CAS
PubMed
Google Scholar
Beaulieu J-M, Sotnikova TD, Yao W-D et al (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci 101:5099–5104. https://doi.org/10.1073/pnas.0307921101
CAS
Article
PubMed
PubMed Central
Google Scholar
Beaulieu JM, Sotnikova TD, Marion S et al (2005) An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273. https://doi.org/10.1016/j.cell.2005.05.012
CAS
Article
PubMed
Google Scholar
Beaulieu J-M, Tirotta E, Sotnikova TD et al (2007) Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci 27:881–885. https://doi.org/10.1523/JNEUROSCI.5074-06.2007
CAS
Article
PubMed
PubMed Central
Google Scholar
Beaulieu J-M, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347. https://doi.org/10.1146/annurev.pharmtox.011008.145634
CAS
Article
PubMed
Google Scholar
Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors—IUPHAR review 13. Br J Pharmacol 172:1–23. https://doi.org/10.1111/bph.12906
CAS
Article
PubMed
Google Scholar
Beilina A, Cookson MR (2016) Genes associated with Parkinson’s disease: regulation of autophagy and beyond. J Neurochem 139 Suppl:91–107. https://doi.org/10.1111/jnc.13266
CAS
Article
PubMed
Google Scholar
Ben-Jonathan N, Hnasko R (2001) Dopamine as a prolactin (PRL) inhibitor. Endocr Rev 22:724–763. https://doi.org/10.1210/edrv.22.6.0451
CAS
Article
PubMed
Google Scholar
Beom S, Cheong D, Torres G et al (2004) Comparative studies of molecular mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal-regulated kinase. J Biol Chem 279:28304–28314. https://doi.org/10.1074/jbc.M403899200
CAS
Article
PubMed
Google Scholar
Berman DM, Gilman AG (1998) Mammalian RGS proteins: barbarians at the gate. J Biol Chem 273:1269–1272. https://doi.org/10.1074/jbc.273.3.1269
CAS
Article
PubMed
Google Scholar
Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940. https://doi.org/10.1016/j.bbamcr.2008.10.005
CAS
Article
PubMed
Google Scholar
Berridge MJ (2016) The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol Rev 96:1261–1296. https://doi.org/10.1152/physrev.00006.2016
CAS
Article
PubMed
Google Scholar
Berridge KC, Kringelbach ML (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 199:457–480
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertorello AM, Hopfield JF, Aperia A, Greengard P (1990) Inhibition by dopamine of (Na(+) + K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 347:386–388. https://doi.org/10.1038/347386a0
CAS
Article
PubMed
Google Scholar
Bibb JA, Snyder GL, Nishi A et al (1999) Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402:669–671. https://doi.org/10.1038/45251
CAS
Article
PubMed
Google Scholar
Biederman J (2005) Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 57:1215–1220
Article
PubMed
Google Scholar
Bilder RM, Volavka J, Lachman HM, Grace AA (2004) The catechol-O-methyltransferase polymorphism: Relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29:1943–1961. https://doi.org/10.1038/sj.npp.1300542
CAS
Article
PubMed
Google Scholar
Bjo A, Lindvall O, Nobin A et al (1975) Evidence of an incerto-hypothalamic dopamine neurone system in the rat. Brain Res 89:29–42
Article
Google Scholar
Borowsky B, Adham N, Jones KA et al (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci 98:8966–8971
Article
CAS
PubMed
PubMed Central
Google Scholar
Bozzi Y, Borrelli E (2006) Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends Neurosci 29:167–174
Article
CAS
PubMed
Google Scholar
Bromek E, Haduch A, Gołembiowska K, Daniel WA (2011) Cytochrome P450 mediates dopamine formation in the brain in vivo. J Neurochem 118:806–815
Article
CAS
PubMed
Google Scholar
Brown GM, Krigstein E, Dankova J, Hornykiewicz O (1972) Relationship between hypothalamic and median eminence catecholamines and thyroid function. Neuroendocrinology 10:207–217
Article
CAS
PubMed
Google Scholar
Buckholtz JW, Treadway MT, Cowan RL et al (2010) Dopaminergic network differences in human impulsivity. Science 329:532
Article
CAS
PubMed
PubMed Central
Google Scholar
Burchett S (2000) Regulators of G protein signaling: a bestiary of modular protein binding domains [In Process Citation]. J Neurochem 75:1335–1351
Article
CAS
PubMed
Google Scholar
Burt DR, Enna SJ, Creese I, Snyder SH (1975) Dopamine receptor binding in the corpus striatum of mammalian brain. Proc Natl Acad Sci U S A 72:4655–4659. https://doi.org/10.1073/pnas.72.11.4655
CAS
Article
PubMed
PubMed Central
Google Scholar
Bychkov E, Zurkovsky L, Garret MB et al (2012) Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum. PLoS ONE 7:e48912. https://doi.org/10.1371/journal.pone.0048912
CAS
Article
PubMed
PubMed Central
Google Scholar
Cachope R, Cheer JF (2014) Local control of striatal dopamine release. Front Behav Neurosci 8:188
Article
CAS
PubMed
PubMed Central
Google Scholar
Cahill E, Salery M, Vanhoutte P, Caboche J (2014) Convergence of dopamine and glutamate signaling onto striatal ERK activation in response to drugs of abuse. Front Pharmacol 4 JAN:1–13. https://doi.org/10.3389/fphar.2013.00172
CAS
Article
Google Scholar
Calabresi P, Centonze D, Bernardi G (2000) Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci 23:S57–S63
Article
CAS
PubMed
Google Scholar
Calabresi P, Picconi B, Tozzi A et al (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17:1022
Article
CAS
PubMed
Google Scholar
Carboni E, Silvagni A (2004) Dopamine reuptake by norepinephrine neurons: exception or rule? Crit Rev Neurobiol 16
Carboni E, Silvagni A, Vacca C, Di Chiara G (2006) Cumulative effect of norepinephrine and dopamine carrier blockade on extracellular dopamine increase in the nucleus accumbens shell, bed nucleus of stria terminalis and prefrontal cortex. J Neurochem 96:473–481
Article
CAS
PubMed
Google Scholar
Cardinal RN, Pennicott DR, Lakmali C et al (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501
Article
CAS
PubMed
Google Scholar
Carlezon WA Jr, Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56:122–132
Article
CAS
PubMed
Google Scholar
Carli M, Evenden JL, Robbins TW (1985) Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature 313:679
Article
CAS
PubMed
Google Scholar
Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia-implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–276
Article
CAS
PubMed
Google Scholar
Carlsson A, Lindqvist M, Magnusson TOR (1957) 3, 4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200
Article
CAS
PubMed
Google Scholar
Carman CV, Benovic JL (1998) G-protein-coupled receptors: turn-ons and turn-offs. Curr Opin Neurobiol 8:335–344. https://doi.org/10.1016/S0959-4388(98)80058-5
CAS
Article
PubMed
Google Scholar
Carrick WT, Burks B, Cairns MJ, Kocerha J (2016) Noncoding RNA regulation of dopamine signaling in diseases of the central nervous system. Front Mol Biosci 3:1–8. https://doi.org/10.3389/fmolb.2016.00069
CAS
Article
Google Scholar
Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617. https://doi.org/10.1038/nrn896
CAS
Article
PubMed
Google Scholar
Castle DJ, Murray RM (1991) The neurodevelopmental basis of sex differences in schizophrenia. Psychol Med 21:565–575
Article
CAS
PubMed
Google Scholar
Celver J, Sharma M, Kovoor A (2010) RGS9-2 mediates specific inhibition of agonist-induced internalization of D2-dopamine receptors. J Neurochem 114:739–749. https://doi.org/10.1111/j.1471-4159.2010.06805.x
CAS
Article
PubMed
Google Scholar
Cenci MA (2007) Dopamine dysregulation of movement control in L-DOPA-induced dyskinesia. Trends Neurosci 30:236–243
Article
CAS
PubMed
Google Scholar
Cepeda C, Murphy KPS, Parent M, Levine MS (2014) The role of dopamine in Huntington’s disease. Prog Brain Res 211:235–254
Article
CAS
PubMed
PubMed Central
Google Scholar
Champagne F, Chretien P, Stevenson C et al (2004) Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J Neurosci 24:4113–4123. https://doi.org/10.1523/JNEUROSCI.5322-03.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40. https://doi.org/10.1038/35065000
CAS
Article
PubMed
Google Scholar
Chang D, Nalls MA, Hallgrimsdottir IB et al (2017) A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 49:1511–1516. https://doi.org/10.1038/ng.3955
CAS
Article
PubMed
PubMed Central
Google Scholar
Chasse SA, Dohlman HG (2003) RGS proteins: G protein-coupled receptors meet their match. Assay Drug Dev Technol 1:357–364. https://doi.org/10.1089/154065803764958649
CAS
Article
PubMed
Google Scholar
Chen J, Rusnak M, Luedtke RR, Sidhu A (2004) D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade. J Biol Chem 279:39317–39330. https://doi.org/10.1074/jbc.M403891200
CAS
Article
PubMed
Google Scholar
Chen J, Song J, Yuan P et al (2011) Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: implications for drug development. J Biol Chem 286:34752–34760
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng H, Ulane Christina M, Burke Robert E (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67:715–725. https://doi.org/10.1002/ana.21995
Article
PubMed
PubMed Central
Google Scholar
Chio CL, Lajiness ME, Huff RM (1994) Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol Pharmacol 45:51–60
CAS
PubMed
Google Scholar
Choi EY, Jeong D, Park KW, Baik JH (1999) G protein-mediated mitogen-activated protein kinase activation by two dopamine D2 receptors. Biochem Biophys Res Commun 256:33–40
Article
CAS
PubMed
Google Scholar
Christenson JG, Dairman W, Udenfriend S (1970) Preparation and properties of a homogeneous aromatic l-amino acid decarboxylase from hog kidney. Arch Biochem Biophys 141:356–367
Article
CAS
PubMed
Google Scholar
Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5:374
Article
CAS
PubMed
Google Scholar
Citrome L (2013) A review of the pharmacology, efficacy and tolerability of recently approved and upcoming oral antipsychotics: an evidence-based medicine approach. CNS Drugs 27:879–911. https://doi.org/10.1007/s40263-013-0105-7
CAS
Article
PubMed
Google Scholar
Citrome L (2015) Brexpiprazole: a new dopamine D2 receptor partial agonist for the treatment of schizophrenia and major depressive disorder. Drugs Today 51:397–414. https://doi.org/10.1358/dot.2015.51.7.2358605
CAS
Article
Google Scholar
Clemens S, Hochman S (2004) Conversion of the modulatory actions of dopamine on spinal reflexes from depression to facilitation in D3 receptor knock-out mice. J Neurosci 24:11337–11345
Article
CAS
PubMed
PubMed Central
Google Scholar
Clemens S, Rye D, Hochman S (2006) Restless legs syndrome Revisiting the dopamine hypothesis from the spinal cord perspective. Neurology 67:125–130
Article
PubMed
Google Scholar
Cohen I, Todd RD, Harmon S, O’Malley KL (1992) Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci USA 89:12093–12097. https://doi.org/10.1073/pnas.89.24.12093
CAS
Article
PubMed
PubMed Central
Google Scholar
Colbran RJ, Brown AM (2004) Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr Opin Neurobiol 14:318–327. https://doi.org/10.1016/j.conb.2004.05.008
CAS
Article
PubMed
Google Scholar
Contreras F, Fouillioux C, Bol\’\ivar A et al (2002) Dopamine, hypertension and obesity. J Hum Hypertens 16:S13
Article
CAS
PubMed
Google Scholar
Cornil CA, Balthazart J, Motte P et al (2002) Dopamine activates noradrenergic receptors in the preoptic area. J Neurosci 22:9320–9330
Article
CAS
PubMed
PubMed Central
Google Scholar
Cornil CA, Castelino CB, Ball GF (2008) Dopamine binds to alpha2-adrenergic receptors in the song control system of zebra finches (Taeniopygia guttata). J Chem Neuroanat 35:202–215
Article
CAS
PubMed
Google Scholar
Cross D, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789. https://doi.org/10.1038/378785a0
CAS
Article
PubMed
Google Scholar
Crowley WR (2015) Neuroendocrine regulation of lactation and milk production. Compr Physiol 5:255–291. https://doi.org/10.1002/cphy.c140029
Article
PubMed
Google Scholar
Cunha-Filho JS, Gross JL, Lemos NA et al (2002) Prolactin and growth hormone secretion after thyrotrophin-releasing hormone infusion and dopaminergic (DA2) blockade in infertile patients with minimal/mild endometriosis. Hum Reprod 17:960–965
Article
CAS
PubMed
Google Scholar
Cyr M, Sotnikova TD, Gainetdinov RR, Caron MG (2006) Dopamine enhances motor and neuropathological consequences of polyglutamine expanded huntingtin. FASEB J 20:2541–2543
Article
CAS
PubMed
Google Scholar
Dahlström A, Fuxe K (1964) A method for the demonstration of monoamine-containing nerve fibres in the central nervous system. Acta Physiol 60:293–294
Article
Google Scholar
Dal Toso R, Sommer B, Ewert M et al (1989) The dopamine D2 receptor: two molecular forms generated by alternative splicing. Embo J 8:4025–4034
Article
CAS
PubMed
PubMed Central
Google Scholar
Dale H (1935) Pharmacology and nerve-endings: Walter Ernest Dixon Memorial Lecture. Proc R Soc Med 28:319–332
CAS
PubMed
PubMed Central
Google Scholar
Dale H (1937) Transmission of nervous effects by acetylcholine: Harvey Lecture, May 20, 1937. Bull N Y Acad Med 13:379
CAS
PubMed
PubMed Central
Google Scholar
Damier P, Kastner A, Agid Y, Hirsch EC (1996) Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson’s disease? Neurology 46:1262
Article
CAS
PubMed
Google Scholar
Damsma G, Pfaus JG, Wenkstern D et al (1992) Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav Neurosci 106:181
Article
CAS
PubMed
Google Scholar
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909
Article
CAS
PubMed
Google Scholar
De Deurwaerdère P (2016) Cariprazine: new dopamine biased agonist for neuropsychiatry disorders. Drugs of Today 52:97–110. https://doi.org/10.1358/dot.2016.52.2.2461868
Article
PubMed
Google Scholar
De Mei C, Ramos M, Iitaka C, Borrelli E (2009) Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 9:53–58. https://doi.org/10.1016/j.coph.2008.12.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Demarest KT, McKay DW, Riegle GD, Moore KE (1983) Biochemical indices of tuberoinfundibular dopaminergic neuronal activity during lactation: a lack of response to prolactin. Neuroendocrinology 36:130–137
Article
CAS
PubMed
Google Scholar
Demarest KT, Riegle GD, Moore KE (1984) Prolactin-induced activation of tuberoinfundibular dopaminergic neurons: evidence for both a rapid ‘tonic’ and a delayed ‘delayed’ component. Neuroendocrinology 38:467–475
Article
CAS
PubMed
Google Scholar
Deming JD, Shin JA, Lim K et al (2015) Dopamine receptor D4 internalization requires a beta-arrestin and a visual arrestin. Cell Signal 27:2002–2013. https://doi.org/10.1016/j.cellsig.2015.06.008
CAS
Article
PubMed
Google Scholar
Depue RA, Collins PF (1999) Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. Behav Brain Sci 22:491–517
Article
CAS
PubMed
Google Scholar
Desdouits F, Siciliano JC, Greengard P, Girault JA (1995) Dopamine- and cAMP-regulated phosphoprotein DARPP-32: phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin. Proc Natl Acad Sci 92:2682–2685. https://doi.org/10.1073/pnas.92.7.2682
CAS
Article
PubMed
PubMed Central
Google Scholar
Devoto P, Flore G (2006) On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons? Curr Neuropharmacol 4:115–125
Article
CAS
PubMed
PubMed Central
Google Scholar
Devoto P, Flore G, Saba P et al (2015) Selective inhibition of dopamine-beta-hydroxylase enhances dopamine release from noradrenergic terminals in the medial prefrontal cortex. Brain Behav 5:e00393
Article
PubMed
PubMed Central
Google Scholar
DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510. https://doi.org/10.1146/annurev.ph.69.013107.100021
CAS
Article
PubMed
Google Scholar
Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 62:132–144
Article
CAS
PubMed
Google Scholar
Di GC, Tanda GL, Frau R, Carboni E (1992) Heterologous monoamine reuptake: lack of transmitter specificity of neuron-specific carriers. Neurochem Int 20:231S–235S
Google Scholar
Dickey AS, La Spada AR (2017) Therapy development in Huntington disease: from current strategies to emerging opportunities. Am J Med Genet Part A 176:842–861
Article
CAS
PubMed
Google Scholar
Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–62
CAS
PubMed
Google Scholar
Doi M, Yujnovsky I, Hirayama J et al (2006) Impaired light masking in dopamine D2 receptor-null mice. Nat Neurosci 9:732–734. https://doi.org/10.1038/nn1711
CAS
Article
PubMed
Google Scholar
Dolmetsch RE, Pajvani U, Fife K et al (2001) Signaling to the nucleus by an L-type calcium channel- calmodulin complex through the MAP kinase pathway. Science 294:333–339. https://doi.org/10.1126/science.1063395
CAS
Article
PubMed
Google Scholar
Ebaugh FG (1923) Neuropsychiatric sequelae of acute epidemic encephalitis in children. Am J Dis Child 25:89–97
Google Scholar
Eiden LE, Weihe E (2011) VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 1216:86–98. https://doi.org/10.1111/j.1749-6632.2010.05906.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Eiden LE, Schäfer MKH, Weihe E, Schütz B (2004) The vesicular amine transporter family (SLC18): Amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch Eur J Physiol 447:636–640. https://doi.org/10.1007/s00424-003-1100-5
CAS
Article
Google Scholar
Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56:331
Article
CAS
PubMed
Google Scholar
Elliott TR (1905) The action of adrenalin. J Physiol 32:401–467
Article
PubMed
PubMed Central
Google Scholar
Erdtmann-Vourliotis M, Mayer P, Ammon S et al (2001) Distribution of G-protein-coupled receptor kinase (GRK) isoforms 2, 3, 5 and 6 mRNA in the rat brain. Brain Res Mol Brain Res 95:129–137. https://doi.org/10.1016/S0006-8993(01)03046-3
CAS
Article
PubMed
Google Scholar
Espinoza S, Salahpour A, Masri B et al (2011) Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol Pharmacol 80:416–425
Article
CAS
PubMed
PubMed Central
Google Scholar
Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain III. Olfactory bulb, anterior olfactory nuclei, olfactory tubercle and piriform cortex. J Comp Neurol 180:533–544
Article
CAS
PubMed
Google Scholar
Fambrough DM, Drachman DB, Satyamurti S (1973) Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science 182:293–295
Article
CAS
PubMed
Google Scholar
Faraone SV, Sergeant J, Gillberg C, Biederman J (2003) The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2:104
PubMed
PubMed Central
Google Scholar
Faraone SV, Perlis RH, Doyle AE et al (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323
Article
CAS
PubMed
Google Scholar
Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114 (Pt 5:2283–2301
Article
PubMed
Google Scholar
Felder CC, Jose PA, Axelrod J (1989) The dopamine-1 agonist, SKF 82526, stimulates phospholipase-C activity independent of adenylate cyclase. J Pharmacol Exp Ther 248:171–175
CAS
PubMed
Google Scholar
Felicio AC, Shih MC, Godeiro-Junior C et al (2009) Molecular imaging studies in Parkinson disease: reducing diagnostic uncertainty. Neurologist 15:6–16
Article
PubMed
Google Scholar
Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24
CAS
PubMed
Google Scholar
Ferguson CS, Tyndale RF (2011) Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci 32:708–714
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernstrom JD, Fernstrom MH (2007) Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 137:1539S–1547S
Article
CAS
PubMed
Google Scholar
Fienberg AA, Hiroi N, Mermelstein PG et al (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838–842
Article
CAS
PubMed
Google Scholar
Fleming AS, Suh EJ, Korsmit M, Rusak B (1994) Activation of Fos-like immunoreactivity in the medial preoptic area and limbic structures of maternal and social interactions in rats. Behav Neurosci 108:724
Article
CAS
PubMed
Google Scholar
Flores-Barrera E, Thomases DR, Heng LJ et al (2014) Late adolescent expression of GluN2B transmission in the prefrontal cortex is input-specific and requires postsynaptic protein kinase A and D1 dopamine receptor signaling. Biol Psychiatry 75:508–516. https://doi.org/10.1016/j.biopsych.2013.07.033
CAS
Article
PubMed
Google Scholar
Floresco SB, Maric TT (2007) Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala–prefrontal cortical pathway. J Neurosci 27:2045–2057
Article
CAS
PubMed
PubMed Central
Google Scholar
Floresco SB, West AR, Ash B et al (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968
Article
CAS
PubMed
Google Scholar
Foster DJ, Conn PJ (2017) Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron 94:431–446. https://doi.org/10.1016/j.neuron.2017.03.016
CAS
Article
PubMed
PubMed Central
Google Scholar
Frankel JS, Schwartz TL (2017) Brexpiprazole and cariprazine: distinguishing two new atypical antipsychotics from the original dopamine stabilizer aripiprazole. Ther Adv Psychopharmacol 7:29–41. https://doi.org/10.1177/2045125316672136
CAS
Article
PubMed
Google Scholar
Frankle WG, Laruelle M (2002) Neuroreceptor imaging in psychiatric disorders. Ann Nucl Med 16:437
Article
CAS
PubMed
Google Scholar
Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749. https://doi.org/10.1056/NEJMra035458
CAS
Article
PubMed
Google Scholar
Freyberg Z, Ferrando SJ, Javitch JA (2010) Roles of the Akt/GSK-3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action. Am J Psychiatry 167:388–396. https://doi.org/10.1176/appi.ajp.2009.08121873
Article
PubMed
Google Scholar
Gainetdinov RR, Wetsel WC, Jones SR et al (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401
Article
CAS
PubMed
Google Scholar
Gainetdinov RR, Bohn LM, Sotnikova TD et al (2003) Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 38:291–303. https://doi.org/10.1016/S0896-6273(03)00192-2
CAS
Article
PubMed
Google Scholar
Gandhi S, Wood NW (2005) Molecular pathogenesis of Parkinson’s disease. Hum Mol Genet 14:2749–2755
Article
CAS
PubMed
Google Scholar
Gao Y, Peterson S, Masri B et al (2015) Cariprazine exerts antimanic properties and interferes with dopamine D2receptor β-arrestin interactions. Pharmacol Res Perspect 3:1–10. https://doi.org/10.1002/prp2.73
CAS
Article
Google Scholar
Gardner EL (2011) Addiction and brain reward and antireward pathways. Adv Psychosom Med 30:22–60
Article
PubMed
PubMed Central
Google Scholar
Gardner B, Hall DA, Strange PG (1996) Pharmacological analysis of dopamine stimulation of [35S]-GTP gamma binding via human D2short and D2long dopamine receptors expressed in recombinant cells. Br J Pharmacol 118:1544–1550
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardner BR, Hall DA, Strange PG (1997) Agonist action at D2 (short) dopamine receptors determined in ligand binding and functional assays. J Neurochem 69:2589–2598
Article
CAS
PubMed
Google Scholar
Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093
Article
CAS
PubMed
PubMed Central
Google Scholar
Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 21:1–22
Article
CAS
Google Scholar
Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752
Article
CAS
PubMed
PubMed Central
Google Scholar
Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321
Article
CAS
PubMed
Google Scholar
Giordano AL, Johnson AE, Rosenblatt JS (1990) Haloperidol-induced disruption of retrieval behavior and reversal with apomorphine in lactating rats. Physiol Behav 48:211–214
Article
CAS
PubMed
Google Scholar
Girault JA, Hemmings HCJ, Williams KR et al (1989) Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. J Biol Chem 264:21748–21759
CAS
PubMed
Google Scholar
Giros B, Sokoloff P, Martres MP et al (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342:923–926. https://doi.org/10.1038/342923a0
CAS
Article
PubMed
Google Scholar
Giros B, Martres MP, Pilon C et al (1991) Shorter variants of the D3dopamine receptor produced through various patterns of alternative splicing. Biochem Biophys Res Commun 176:1584–1592. https://doi.org/10.1016/0006-291X(91)90469-N
CAS
Article
PubMed
Google Scholar
Giros B, Jaber M, Jones SR et al (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612
Article
CAS
PubMed
Google Scholar
Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90
Article
CAS
PubMed
Google Scholar
Gold JM, Waltz JA, Matveeva TM et al (2012) Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. Arch Gen Psychiatry 69:129–138
Article
PubMed
PubMed Central
Google Scholar
Goldberg LI, Volkman PH, Kohli JD (1978) A comparison of the vascular dopamine receptor with other dopamine receptors. Annu Rev Pharmacol Toxicol 18:57–79
Article
CAS
PubMed
Google Scholar
Gomez-Sintes R, Bortolozzi A, Artigas F, Lucas JJ (2014) Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice. Eur Neuropsychopharmacol 24:1524–1533. https://doi.org/10.1016/j.euroneuro.2014.07.004
CAS
Article
PubMed
Google Scholar
Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53:583–587. https://doi.org/10.1016/j.neuropharm.2007.07.007
CAS
Article
PubMed
PubMed Central
Google Scholar
Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24
Article
CAS
PubMed
Google Scholar
Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227. https://doi.org/10.1016/j.tins.2007.03.003
CAS
Article
PubMed
Google Scholar
Grattan DR, Averill RLW (1995) Absence of short-loop autoregulation of prolactin during late pregnancy in the rat. Brain Res Bull 36:413–416. https://doi.org/10.1016/0361-9230(94)00216-N
CAS
Article
PubMed
Google Scholar
Graybiel AM (1997) The basal ganglia and cognitive pattern generators. Schizophr Bull 23:459
Article
CAS
PubMed
Google Scholar
Graybiel AM (2000) The basal ganglia. Curr Biol 10:R509–R511
Article
CAS
PubMed
Google Scholar
Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030. https://doi.org/10.1126/science.294.5544.1024
CAS
Article
PubMed
Google Scholar
Gregerson KA, Chuknyiska R, Golesorkhi N (1994) Stimulation of prolactin release by dopamine withdrawal: role of calcium influx. Am J Physiol 267:E789–E794
CAS
PubMed
Google Scholar
Gresch PJ, Sved AF, Zigmond MJ, Finlay JM (1995) Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J Neurochem 65:111–116
Article
CAS
PubMed
Google Scholar
Grossman GH, Mistlberger RE, Antle MC et al (2000) Sleep deprivation stimulates serotonin release in the suprachiasmatic nucleus. Neuroreport 11:1929–1932
Article
CAS
PubMed
Google Scholar
Gu H (2013) Stem cell-derived neurons for the treatment of neurodegenerative diseases. Clin Pharmacol Biopharm 2:1000111/1–1000111/4. https://doi.org/10.4172/2167-065X.1000111
Article
Google Scholar
Gudelsky GA (1981) Tuberoinfundibular dopamine neurons and the regulation of prolactin secretion. Psychoneuroendocrinology 6:3–16
Article
CAS
PubMed
Google Scholar
Gudelsky G, Porter J (1980) Release of dopamine from tuberoinfundibular neurons into pituitary stalk blood after prolactin or haloperidol administration. Endocrinology 106:526–529
Article
CAS
PubMed
Google Scholar
Guillot TS, Miller GW (2009) Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol Neurobiol 39:149–170. https://doi.org/10.1007/s12035-009-8059-y
CAS
Article
PubMed
Google Scholar
Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465–502. https://doi.org/10.1016/j.pharmthera.2005.09.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Gurevich VV, Gurevich EV (2014) Overview of different mechanisms of arrestin-mediated signaling. Curr Protoc Pharmacol 67:1–9. https://doi.org/10.1002/0471141755.ph0210s67
Article
Google Scholar
Gurevich EV, Benovic JL, Gurevich VV (2002) Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development. Neuroscience 109:421–436. https://doi.org/10.1016/S0306-4522(01)00511-5
CAS
Article
PubMed
Google Scholar
Gurevich EV, Gainetdinov RR, Gurevich VV (2016) G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 111:1–16. https://doi.org/10.1016/j.phrs.2016.05.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Ha AD, Fung VSC (2012) Huntington’s disease. Curr Opin Neurol 25:491–498
Article
PubMed
Google Scholar
Ha AD, Jankovic J (2011) Exploring the correlates of intermediate CAG repeats in Huntington disease. Postgrad Med 123:116–121
Article
PubMed
Google Scholar
Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330
Article
PubMed
Google Scholar
Halpain S, Girault J-A, Greengard P (1990) Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343:369–372. https://doi.org/10.1038/343369a0
CAS
Article
PubMed
Google Scholar
Hampson EC, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12:4911–4922
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansen S (1994) Maternal behavior of female rats with 6-OHDA lesions in the ventral striatum: characterization of the pup retrieval deficit. Physiol Behav 55:615–620
Article
CAS
PubMed
Google Scholar
Hansen S, Harthon C, Wallin E et al (1991) The effects of 6-OHDA-induced dopamine depletions in the ventral or dorsal striatum on maternal and sexual behavior in the female rat. Pharmacol Biochem Behav 39:71–77
Article
CAS
PubMed
Google Scholar
Harrington KA, Augood SJ, Kingsbury AE et al (1996) Dopamine transporter (Dat) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson’s disease. Mol brain Res 36:157–162
Article
CAS
PubMed
Google Scholar
Hasue RH, Shammah-Lagnado SJ (2002) Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 454:15–33
Article
CAS
PubMed
Google Scholar
Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35–42. https://doi.org/10.1016/j.nbd.2012.10.011
CAS
Article
PubMed
Google Scholar
Hemmings HC, Greengard P, Tung HYL, Cohen P (1984a) DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310:503–505. https://doi.org/10.1038/310503a0
CAS
Article
PubMed
Google Scholar
Hemmings HC, Nairn AC, Greengard P (1984b) DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. J Biol Chem 259:14491–14497
CAS
PubMed
Google Scholar
Henry DJ, Hu X-T, White FJ (1998) Adaptations in the mesoaccumbens dopamine system resulting from repeated administration of dopamine D1 and D2 receptor-selective agonists: relevance to cocaine sensitization. Psychopharmacology 140:233–242
Article
CAS
PubMed
Google Scholar
Hernandez DG, Reed X, Singleton AB (2016) Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem 139 Suppl:59–74. https://doi.org/10.1111/jnc.13593
CAS
Article
PubMed
PubMed Central
Google Scholar
Hernandez-Lopez S, Tkatch T, Perez-Garci E et al (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2 + currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 20:8987–8995 doi: 20/24/8987 [pii]
Article
CAS
PubMed
PubMed Central
Google Scholar
Herrera-Soto A, Diaz-Veliz G, Mora S et al (2017) On the role of DT-diaphorase inhibition in aminochrome-induced neurotoxicity in vivo. Neurotox Res 32:134–140
Article
CAS
PubMed
Google Scholar
Heximer SP, Blumer KJ (2007) RGS proteins: swiss army knives in seven-transmembrane domain receptor signaling networks. Sci STKE 2007:. https://doi.org/10.1126/stke.3702007pe2
Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12:217–222
Article
CAS
PubMed
Google Scholar
Hnasko TS, Edwards RH (2012) Neurotransmitter corelease: mechanism and physiological role. Annu Rev Physiol 74:225–243
Article
CAS
PubMed
Google Scholar
Hohman LB (1922) Post-encephalitic behavior disorders in children. Johns Hopkins Hospt Bull 33:372–375
Google Scholar
Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559. https://doi.org/10.1124/pr.54.3.527
CAS
Article
PubMed
Google Scholar
Holstege JC, Van Dijken H, Buijs RM et al (1996) Distribution of dopamine immunoreactivity in the rat, cat, and monkey spinal cord. J Comp Neurol 376:631–652
Article
CAS
PubMed
Google Scholar
Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96:651–656
Article
CAS
PubMed
Google Scholar
Howes OD, McCutcheon R, Owen MJ, Murray RM (2017) The role of genes, stress, and dopamine in the development of schizophrenia. Biol Psychiatry 81:9–20. https://doi.org/10.1016/j.biopsych.2016.07.014
CAS
Article
PubMed
Google Scholar
Hu X-T, Dong Y, Zhang X-F, White FJ (2005) Dopamine D2 receptor-activated Ca2 + signaling modulates voltage-sensitive sodium currents in rat nucleus accumbens neurons. J Neurophysiol 93:1406–1417. https://doi.org/10.1152/jn.00771.2004
CAS
Article
PubMed
Google Scholar
Hu W, MacDonald ML, Elswick DE, Sweet RA (2015) The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 1338:38–57
Article
CAS
PubMed
Google Scholar
Huenchuguala S, Muñoz P, Graumann R et al (2016) DT-diaphorase protects astrocytes from aminochrome-induced toxicity. Neurotoxicology 55:10–12
Article
CAS
PubMed
Google Scholar
Huenchuguala S, Muñoz P, Segura-Aguilar J (2017) The importance of mitophagy in maintaining mitochondrial function in U373MG Cells. Bafilomycin A1 restores aminochrome-induced mitochondrial damage. ACS Chem Neurosci 8:2247–2253
Article
CAS
PubMed
Google Scholar
Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res Rev 56:27–78
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31:6–41
Article
CAS
PubMed
Google Scholar
Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol 41:571–591
Article
CAS
PubMed
PubMed Central
Google Scholar
Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30:188–193
Article
CAS
PubMed
Google Scholar
Jakel RJ, Maragos WF (2000) Neuronal cell death in Huntington’s disease: a potential role for dopamine. Trends Neurosci 23:239–245
Article
CAS
PubMed
Google Scholar
Jones CK, Byun N, Bubser M (2012) Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology 37:16
Article
CAS
PubMed
Google Scholar
Jose PA, Yu PY, Yamaguchi I et al (1995) Dopamine D1 receptor regulation of phospholipase C. Hypertens Res 18(Suppl 1):S39–S42
Article
CAS
PubMed
Google Scholar
Jose PA, Eisner GM, Felder RA (2002) Role of dopamine receptors in the kidney in the regulation of blood pressure. Curr Opin Nephrol Hypertens 11:87–92. https://doi.org/10.1097/00041552-200201000-00013
Article
PubMed
Google Scholar
Joyce EM, Roiser JP (2007) Cognitive heterogeneity in schizophrenia. Curr Opin Psychiatry 20:268
Article
PubMed
PubMed Central
Google Scholar
Kahn RS, Sommer IE, Murray RM et al (2015) Schizophrenia. Nat Rev Dis Prim 1:15067. https://doi.org/10.1038/nrdp.2015.67
Article
PubMed
Google Scholar
Kaidanovich-Beilin O, Woodgett JR (2011) GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci 4:40. https://doi.org/10.3389/fnmol.2011.00040
CAS
Article
PubMed
PubMed Central
Google Scholar
Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912. https://doi.org/10.1016/S0140-6736(14)61393-3
CAS
Article
PubMed
Google Scholar
Kambeitz J, Abi-Dargham A, Kapur S, Howes OD (2014) Alterations in cortical and extrastriatal subcortical dopamine function in schizophrenia: systematic review and meta-analysis of imaging studies. Br J Psychiatry 204:420–429
Article
PubMed
Google Scholar
Kandel E, Jessell TM, Schwartz JH et al (2013) Principles of neural science. McGraw-Hill Education, New York
Google Scholar
Kanner BI, Schuldiner S (1987) Mechanism of transport and storage of neurotransmitter. Crit Rev Biochem 22:1–38
Article
CAS
Google Scholar
Kebabian JW (1978) Multiple classes of dopamine receptors in mammalian central nervous system: the involvement of dopamine-sensitive adenylyl cyclase. Life Sci 23:479–483. https://doi.org/10.1016/0024-3205(78)90157-1
CAS
Article
PubMed
Google Scholar
Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96. https://doi.org/10.1038/277093a0
CAS
Article
PubMed
Google Scholar
Kebabian JW, Greengard P (1971) Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science 174:1346–1349. https://doi.org/10.1126/science.174.4016.1346
CAS
Article
PubMed
Google Scholar
Kebabian JW, Petzold GL, Greengard P (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc Natl Acad Sci USA 69:2145–2149. https://doi.org/10.1073/PNAS.69.8.2145
CAS
Article
PubMed
PubMed Central
Google Scholar
Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenny PJ (2011) Common cellular and molecular mechanisms in obesity and drug addiction. Nat Rev Neurosci 12:638
Article
CAS
PubMed
Google Scholar
Kim EK, Choi E-J (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta (BBA) 1802:396–405
Article
CAS
Google Scholar
Kim SD, Fung VSC (2014) An update on Huntington’s disease: from the gene to the clinic. Curr Opin Neurol 27:477–483
Article
CAS
PubMed
Google Scholar
Kim KM, Valenzano KJ, Robinson SR et al (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J Biol Chem 276:37409–37414. https://doi.org/10.1074/jbc.M106728200
CAS
Article
PubMed
Google Scholar
Kim SJ, Kim MY, Lee EJ et al (2004) Distinct regulation of internalization and mitogen-activated protein kinase activation by two isoforms of the dopamine D2 receptor. Mol Endocrinol 18:640–652. https://doi.org/10.1210/me.2003-0066
CAS
Article
PubMed
Google Scholar
King MM, Huang CY, Chock PB et al (1984) Mammalian brain phosphoproteins as substrates for calcineurin. J Biol Chem 259:8080–8083
CAS
PubMed
Google Scholar
Kiss B, Horvath A, Nemethy Z et al (2010) Cariprazine (RGH-188), a dopamine D3 receptor-preferring, D3/D2 dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile. J Pharmacol Exp Ther 333:328–340. https://doi.org/10.1124/jpet.109.160432
CAS
Article
PubMed
Google Scholar
Komolov KE, Benovic JL (2018) G protein-coupled receptor kinases: past, present and future. Cell Signal 41:17–24. https://doi.org/10.1016/j.cellsig.2017.07.004
CAS
Article
PubMed
Google Scholar
Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58
Article
CAS
PubMed
Google Scholar
Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476
Article
CAS
PubMed
Google Scholar
Kortekaas R, Leenders KL, van Oostrom JCH et al (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57:176–179
Article
CAS
PubMed
Google Scholar
Kovoor A, Seyffarth P, Ebert J et al (2005) D2 dopamine receptors colocalize regulator of G-protein signaling 9-2 (RGS9-2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways. J Neurosci 25:2157–2165. https://doi.org/10.1523/JNEUROSCI.2840-04.2005
CAS
Article
PubMed
PubMed Central
Google Scholar
Kravitz AV, Freeze BS, Parker PRL et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622
Article
CAS
PubMed
PubMed Central
Google Scholar
Krüger THC, Hartmann U, Schedlowski M (2005) Prolactinergic and dopaminergic mechanisms underlying sexual arousal and orgasm in humans. World J Urol 23:130–138
Article
CAS
PubMed
Google Scholar
Kuzhikandathil EV, Yu W, Oxford GS (1998) Human dopamine D3 and D2L receptors couple to inward rectifier potassium channels in mammalian cell lines. Mol Cell Neurosci 12:390–402. https://doi.org/10.1006/mcne.1998.0722
CAS
Article
PubMed
Google Scholar
Lange KW, Reichl S, Lange KM et al (2010) The history of attention deficit hyperactivity disorder. ADHD Atten Deficit Hyperact Disord 2:241–255
Article
Google Scholar
Laporte SA, Miller WE, Kim K-M, Caron MG (2002) Beta-Arrestin/AP-2 interaction in G protein-coupled receptor internalization: identification of a beta-arrestin binging site in beta 2-adaptin. J Biol Chem 277:9247–9254. https://doi.org/10.1074/jbc.M108490200
CAS
Article
PubMed
Google Scholar
Ledonne A, Berretta N, Davoli A et al (2011) Electrophysiological effects of trace amines on mesencephalic dopaminergic neurons. Front Syst Neurosci 5:56
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee M, O’Regan S, Moreau JL et al (2000) Regulation of the PcI7-Pho85 cyclin-cdk complex by Pho81. Mol Microbiol 38:411–422. https://doi.org/10.1046/j.1365-2958.2000.02140.x
CAS
Article
PubMed
Google Scholar
Lee SP, So CH, Rashid AJ et al (2004) Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 279:35671–35678. https://doi.org/10.1074/jbc.M401923200
CAS
Article
PubMed
Google Scholar
Lee S, Hjerling-Leffler J, Zagha E et al (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30:16796–16808
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee S-M, Yang Y, Mailman RB (2014) Dopamine D1 receptor signaling: does GαQ-phospholipase C actually play a role? J Pharmacol Exp Ther 351:9–17. https://doi.org/10.1124/jpet.114.214411
CAS
Article
PubMed
PubMed Central
Google Scholar
Leggio GM, Bucolo C, Platania CBM et al (2016) Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther 165:164–177. https://doi.org/10.1016/j.pharmthera.2016.06.007
CAS
Article
PubMed
Google Scholar
Levesque D, Diaz J, Pilon C et al (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H] hydroxy-N, N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci 89:8155–8159
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Chen P, Smith MS (1999) Neuropeptide Y and tuberoinfundibular dopamine activities are altered during lactation: role of prolactin. Endocrinology 140:118–123
Article
CAS
PubMed
Google Scholar
Li D, Sham PC, Owen MJ, He L (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15:2276–2284
Article
CAS
PubMed
Google Scholar
Li Y-C, Xi D, Roman J et al (2009) Activation of glycogen synthase kinase-3 is required for hyperdopamine and D2 receptor-mediated inhibition of synaptic NMDA receptor function in the rat prefrontal cortex. J Neurosci 29:15551–15563. https://doi.org/10.1523/JNEUROSCI.3336-09.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Li L, Homan KT, Vishnivetskiy SA et al (2015) G protein-coupled receptor kinases of the GRK4 protein subfamily phosphorylate inactive G protein-coupled receptors (GPCRs). J Biol Chem 290:10775–10790. https://doi.org/10.1074/jbc.M115.644773
CAS
Article
PubMed
PubMed Central
Google Scholar
Liang C-L, Nelson O, Yazdani U et al (2004) Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: human midbrain dopamine neurons. J Comp Neurol 473:97–106
Article
CAS
PubMed
Google Scholar
Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 91:415–433
Article
CAS
PubMed
Google Scholar
Lindemann L, Meyer CA, Jeanneau K et al (2008) Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther 324:948–956
Article
CAS
PubMed
Google Scholar
Lindvall OL, Björklund AB, Skagerberg G (1983) Dopamine-containing neurons in the spinal cord: anatomy and some functional aspects. Ann Neurol Off J Am Neurol Assoc Child Neurol Soc 14:255–260
CAS
Google Scholar
Liu F, Wan Q, Pristupa ZB et al (2000) Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature 403:274–280. https://doi.org/10.1038/35002014
CAS
Article
PubMed
Google Scholar
Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644. https://doi.org/10.1038/nrd2926
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu C, Kershberg L, Wang J et al (2018) Dopamine secretion is mediated by sparse active zone-like release sites. Cell 172:706–718.e15. https://doi.org/10.1016/j.cell.2018.01.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Loewi O (1921) Über humorale übertragbarkeit der Herznervenwirkung. Pflüger’s Arch für die gesamte Physiol des Menschen der Tiere 189:239–242
Article
Google Scholar
Lohse MJ, Benovic JL, Codina J et al (1990) beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550. https://doi.org/10.1126/science.2163110
CAS
Article
PubMed
Google Scholar
Loughlin SE, Fallon JH (1983) Dopaminergic and non-dopaminergic projections to amygdala from substantia nigra and ventral tegmental area. Brain Res 262:334–338
Article
CAS
PubMed
Google Scholar
Lozano J, Munoz P, Nore BF et al (2010) Stable expression of short interfering RNA for DT-diaphorase induces neurotoxicity. Chem Res Toxicol 23:1492–1496
Article
CAS
PubMed
Google Scholar
Luciana M, Collins PF, Depue RA (1998) Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cereb Cortex 8:218–226
Article
CAS
PubMed
Google Scholar
Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465. https://doi.org/10.1074/jbc.274.3.1185
CAS
Article
PubMed
Google Scholar
Lynch WJ, Peterson AB, Sanchez V et al (2013) Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev 37:1622–1644
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma J, Long LH, Hu ZL et al (2015) Activation of D1-like receptor-dependent phosphatidylinositol signal pathway by SKF83959 inhibits voltage-gated sodium channels in cultured striatal neurons. Brain Res 1615:71–79. https://doi.org/10.1016/j.brainres.2015.04.030
CAS
Article
PubMed
Google Scholar
MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 22:443–485
Article
CAS
PubMed
Google Scholar
MacDonald ME, Ambrose CM, Duyao MP et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983
Article
Google Scholar
Madras BK, Miller GM, Fischman AJ (2005) The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1397–1409
Article
CAS
PubMed
Google Scholar
Maeda K, Sugino H, Akazawa H et al (2014) Brexpiprazole I: in vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther 350:589–604. https://doi.org/10.1124/jpet.114.213793
CAS
Article
PubMed
Google Scholar
Magnusson JE, Fisher K (2000) The involvement of dopamine in nociception: the role of D1 and D2 receptors in the dorsolateral striatum. Brain Res 855:260–266
Article
CAS
PubMed
Google Scholar
Maia TV, Frank MJ (2017) An integrative perspective on the role of dopamine in schizophrenia. Biol Psychiatry 81:52–66
Article
CAS
PubMed
Google Scholar
Manger PR, Fuxe K, Ridgway SH, Siegel JM (2004) The distribution and morphological characteristics of catecholaminergic cells in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). Brain Behav Evol 64:42–60
Article
PubMed
Google Scholar
Martelli AM, Chiarini F, Evangelisti C et al (2010) The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histol Histopathol 25:669–680
CAS
PubMed
Google Scholar
Martinez G, Weiner RI, Martinez G (1992) Dissociation of dopamine from its receptor as a signal in the pleiotropic hypothalamic regulation of prolactin secretion. Endocr Rev 13:241–245. https://doi.org/10.1210/edrv-13-2-241
Article
Google Scholar
Martini M, De Santis MC, Braccini L et al (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 46:372–383. https://doi.org/10.3109/07853890.2014.912836
CAS
Article
PubMed
Google Scholar
Matthews M, Nigg JT, Fair DA (2014) Attention deficit hyperactivity disorder. Curr Top Behav Neurosci 16:235–266. https://doi.org/10.1007/7854_2013_249
Article
PubMed
PubMed Central
Google Scholar
Meyer N, MacCabe JH (2016) Schizophrenia. Medicine (Baltimore) 44:649–653. https://doi.org/10.1016/j.mpmed.2016.08.003
Article
Google Scholar
Michael-Titus A, Bousselmame R, Costentin J (1990) Stimulation of dopamine D2 receptors induces an analgesia involving an opiodergic but non enkephalinergic link. Eur J Pharmacol 187:201–207
Article
CAS
PubMed
Google Scholar
Miller GW, Gainetdinov RR, Levey AI, Caron MG (1999) Dopamine transporters and neuronal injury. Trends Pharmacol Sci 20:424–429
Article
CAS
PubMed
Google Scholar
Miller JS, Barr JL, Harper LJ et al (2014) The GSK3 signaling pathway is activated by cocaine and is critical for cocaine conditioned reward in mice. PLoS ONE 9:. https://doi.org/10.1371/journal.pone.0088026
Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158:5–14. https://doi.org/10.1111/j.1476-5381.2009.00169.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Missale C, Nash SR, Robinson SW et al (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225
Article
CAS
PubMed
Google Scholar
Missale C, Fiorentini C, Collo G, Spano P (2010) The neurobiology of dopamine receptors: evolution from the dual concept to heterodimer complexes. J Recept Signal Transduct 30:347–354. https://doi.org/10.3109/10799893.2010.506192
CAS
Article
Google Scholar
Mitchell HA, Weinshenker D (2010) Good night and good luck: norepinephrine in sleep pharmacology. Biochem Pharmacol 79:801–809
Article
CAS
PubMed
Google Scholar
Mogenson GJ, Nielsen M (1984) Neuropharmacological evidence to suggest that the nucleus accumbens and subpallidal region contribute to exploratory locomotion. Behav Neural Biol 42:52–60
Article
CAS
PubMed
Google Scholar
Mogenson GJ, Wu M, Jones DL (1980) Locomotor activity elicited by injections of picrotoxin into the ventral tegmental area is attenuated by injections of GABA into the globus pallidus. Brain Res 191:569–571
Article
CAS
PubMed
Google Scholar
Moore KE (1987) Interactions between prolactin and dopaminergic neurons. Biol Reprod 36:47–58. https://doi.org/10.1095/biolreprod36.1.47
CAS
Article
PubMed
Google Scholar
Morelli M, Carboni E, Cozzolino A et al (1992) Combined microdialysis and fos immunohistochemistry for the estimation of dopamine neurotransmission in the rat caudate-putamen. J Neurochem 59:1158–1160
Article
CAS
PubMed
Google Scholar
Morimoto S, Takao M, Hatsuta H et al (2017) Homovanillic acid and 5-hydroxyindole acetic acid as biomarkers for dementia with Lewy bodies and coincident Alzheimer’s disease: An autopsy-confirmed study. PLoS ONE 12:e0171524
Article
CAS
PubMed
PubMed Central
Google Scholar
Morón JA, Brockington A, Wise RA et al (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395
Article
PubMed
PubMed Central
Google Scholar
Mougeot JLC, Hirsch MA, Stevens CB, Mougeot FKB (2016) Oral biomarkers in exercise-induced neuroplasticity in Parkinson’s disease. Oral Dis 22:745–753. https://doi.org/10.1111/odi.12463
Article
PubMed
Google Scholar
Murphy JA, Stein IS, Lau CG et al (2014) Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca 2+ signaling in spines. J Neurosci 34:869–879. https://doi.org/10.1523/JNEUROSCI.4538-13.2014
CAS
Article
PubMed
PubMed Central
Google Scholar
Mushegian A, Gurevich VV, Gurevich EV (2012) The origin and evolution of G protein-coupled receptor kinases. PLoS One 7:. https://doi.org/10.1371/journal.pone.0033806
Myers RH, Sax DS, Schoenfeld M et al (1985) Late onset of Huntington’s disease. J Neurol Neurosurg Psychiatry 48:530–534
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase the initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917
CAS
PubMed
Google Scholar
Nakagawa M, Kuri M, Kambara N et al (2008) Dopamine D2 receptor Taq IA polymorphism is associated with postoperative nausea and vomiting. J Anesth 22:397–403
Article
PubMed
Google Scholar
Newman-Tancredi A, Nicolas J-P, Audinot V et al (1998) Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 358:197–206
Article
CAS
PubMed
Google Scholar
Nigg JT (2013) Attention-deficit/hyperactivity disorder and adverse health outcomes. Clin Psychol Rev 33:215–228
Article
PubMed
Google Scholar
Nikolaus S, Antke C, Müller H-W (2009) In vivo imaging of synaptic function in the central nervous system: I. Movement disorders and dementia. Behav Brain Res 204:1–31
Article
PubMed
Google Scholar
Nishi A, Snyder GL, Greengard P (1997) Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 17:8147–8155
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishi A, Matamales M, Musante V et al (2017) Glutamate counteracts dopamine/pka signaling via dephosphorylation of DARPP-32 Ser-97 and alteration of its cytonuclear distribution. J Biol Chem 292:1462–1476. https://doi.org/10.1074/jbc.M116.752402
CAS
Article
PubMed
Google Scholar
Noaín D, Avale ME, Wedemeyer C et al (2006) Identification of brain neurons expressing the dopamine D4 receptor gene using BAC transgenic mice. Eur J Neurosci 24:2429–2438
Article
PubMed
Google Scholar
Numan M (2007) Motivational systems and the neural circuitry of maternal behavior in the rat. Dev Psychobiol 49:165–171. https://doi.org/10.1002/dev
Article
Google Scholar
Numan M, Sheehan TP (1997) Neuroanatomical circuitry for mammalian maternal behavior. Ann N Y Acad Sci 807:101–125
Article
CAS
PubMed
Google Scholar
Numan M, Smith HG (1984) Maternal behavior in rats: evidence for the involvement of preoptic projections to the ventral tegmental area. Behav Neurosci 98:712–712. https://doi.org/10.1037/0735-7044.98.4.712
CAS
Article
PubMed
Google Scholar
Numan M, Numan MJ, Pliakou N et al (2005) The effects of D1 or D2 dopamine receptor antagonism in the medial preoptic area, ventral pallidum, or nucleus accumbens on the maternal retrieval response and other aspects of maternal behavior in rats. Behav Neurosci 119:1588–1604. https://doi.org/10.1037/0735-7044.119.6.1588
CAS
Article
PubMed
Google Scholar
Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PRA (2015) The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 16:305
Article
CAS
PubMed
Google Scholar
O’Brien WT, Huang J, Buccafusca R et al (2011) Glycogen synthase kinase-3 is essential for β-arrestin-2 complex formation and lithium-sensitive behaviors in mice. J Clin Invest 121:3756–3762. https://doi.org/10.1172/JCI45194
CAS
Article
PubMed
PubMed Central
Google Scholar
O’Donnell P (2013) Of mice and men: what physiological correlates of cognitive deficits in a mouse model of schizophrenia tell us about psychiatric disease. Neuron 80:265–266
Article
CAS
PubMed
Google Scholar
Obeso Jose A, Marin C, Rodriguez-Oroz C et al (2009) The basal ganglia in Parkinson’s disease: Current concepts and unexplained observations. Ann Neurol 64:S30–S46. https://doi.org/10.1002/ana.21481
Article
Google Scholar
Otmakhova N, Duzel E, Deutch AY, Lisman J (2013) The hippocampal-VTA loop: the role of novelty and motivation in controlling the entry of information into long-term memory. In: Baldassarre G, Mirolli M (eds) Intrinsically motivated learning in natural and artificial systems. Springer, Berlin, Heidelberg, pp 235–254
Chapter
Google Scholar
Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia Lancet 388:86–97. https://doi.org/10.1016/S0140-6736(15)01121-6
Article
PubMed
PubMed Central
Google Scholar
Pan WHT, Yang S-Y, Lin S-K (2004) Neurochemical interaction between dopaminergic and noradrenergic neurons in the medial prefrontal cortex. Synapse 53:44–52
Article
CAS
PubMed
Google Scholar
Pan B, Chen J, Lian J et al (2015) Unique effects of acute aripiprazole treatment on the dopamine D2 receptor downstream cAMP-PKA and Akt-GSK3β signalling pathways in rats. PLoS ONE 10:. https://doi.org/10.1371/journal.pone.0132722
Paoletti P, Vila I, Rifé M et al (2008) Dopaminergic and glutamatergic signaling crosstalk in Huntington’s disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J Neurosci 28:10090–10101
Article
CAS
PubMed
PubMed Central
Google Scholar
Parada M, King S, Li M, Fleming AS (2008) The roles of accumbal dopamine D1 and D2 receptors in maternal memory in rats. Behav Neurosci 122:368–376. https://doi.org/10.1037/0735-7044.122.2.368
Article
PubMed
Google Scholar
Park SM, Chen M, Schmerberg CM et al (2016) Effects of β-arrestin-biased dopamine D2 receptor ligands on schizophrenia-like behavior in hypoglutamatergic mice. Neuropsychopharmacology 41:704–715. https://doi.org/10.1038/npp.2015.196
CAS
Article
PubMed
Google Scholar
Parkinson JA, Olmstead MC, Burns LH et al (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity byd-amphetamine. J Neurosci 19:2401–2411
Article
CAS
PubMed
PubMed Central
Google Scholar
Pascoli V, Besnard A, Herv D et al (2011) Cyclic adenosine monophosphateindependent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biol Psychiatry 69:218–227. https://doi.org/10.1016/j.biopsych.2010.08.031
CAS
Article
PubMed
Google Scholar
Paul S, Nairn AC, Wang P, Lombroso PJ (2003) NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat Neurosci 6:34–42. https://doi.org/10.1038/nn989
CAS
Article
PubMed
Google Scholar
Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417
Article
CAS
PubMed
Google Scholar
Pedersen CA, Caldwell JD, Walker C et al (1994) Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci 108:1163
Article
CAS
PubMed
Google Scholar
Peineau S, Taghibiglou C, Bradley C et al (2007) LTP Inhibits LTD in the Hippocampus via Regulation of GSK3β. Neuron 53:703–717. https://doi.org/10.1016/j.neuron.2007.01.029
CAS
Article
PubMed
Google Scholar
Perez-Costas E, Melendez-Ferro M, Roberts RC (2010) Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem 113:287–302
Article
CAS
PubMed
PubMed Central
Google Scholar
Perreault ML, Hasbi A, O’dowd BF, George SR (2014) Heteromeric dopamine receptor signaling complexes: Emerging neurobiology and disease relevance. Neuropsychopharmacology 39:156–168. https://doi.org/10.1038/npp.2013.148
CAS
Article
PubMed
Google Scholar
Peterson SM, Pack TF, Wilkins AD et al (2015) Elucidation of G-protein and β-arrestin functional selectivity at the dopamine D2 receptor. Proc Natl Acad Sci 112:7097–7102. https://doi.org/10.1073/pnas.1502742112
CAS
Article
PubMed
PubMed Central
Google Scholar
Peyron C, Luppi P-H, Kitahama K et al (1995) Origin of the dopaminergic innervation of the rat dorsal raphe nucleus. Neuroreport 6:2527–2531
Article
CAS
PubMed
Google Scholar
Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650. https://doi.org/10.1038/nrm908
CAS
Article
PubMed
Google Scholar
Pijnenburg AJ, Van Rossum JM (1973) Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J Pharmacy Pharmacol 25:1003–1005
Article
CAS
Google Scholar
Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692. https://doi.org/10.1146/annurev.biochem.67.1.653
CAS
Article
PubMed
Google Scholar
Poewe W (2008) Non-motor symptoms in Parkinson’s disease. Eur J Neurol 15:14–20
Article
PubMed
Google Scholar
Polanczyk G, De Lima MS, Horta BL et al (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry
Popat RA, Van Den Eeden SK, Tanner CM et al (2005) Effect of reproductive factors and postmenopausal hormone use on the risk of Parkinson disease. Neurology 65:383–390
Article
CAS
PubMed
Google Scholar
Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601
Article
PubMed
Google Scholar
Premont RT, Gainetdinov RR (2007) Physiological roles of G protein–coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534. https://doi.org/10.1146/annurev.physiol.69.022405.154731
CAS
Article
PubMed
Google Scholar
Premont RT, Inglese J, Lefkowitz RJ (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 9:175–182
Article
CAS
PubMed
Google Scholar
Puig S, Noble F, Benturquia N (2012) Short-and long-lasting behavioral and neurochemical adaptations: relationship with patterns of cocaine administration and expectation of drug effects in rats. Transl Psychiatry 2:e175
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu S, Ondo WG, Zhang X et al (2006) Projections of diencephalic dopamine neurons into the spinal cord in mice. Exp brain Res 168:152–156
Article
CAS
PubMed
Google Scholar
Quan W, Kim JH, Albert PR et al (2008) Roles of G protein and β-arrestin in dopamine D2 receptor-mediated ERK activation. Biochem Biophys Res Commun 377:705–709. https://doi.org/10.1016/j.bbrc.2008.10.044
CAS
Article
PubMed
Google Scholar
Rajagopal S, Shenoy SK (2018) GPCR desensitization: acute and prolonged phases. Cell Signal 41:9–16. https://doi.org/10.1016/j.cellsig.2017.01.024
CAS
Article
PubMed
Google Scholar
Ralph RJ, Paulus MP, Fumagalli F et al (2001) Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci 21:305–313
Article
CAS
PubMed
PubMed Central
Google Scholar
Rashid AJ, So CH, Kong MMC et al (2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci 104:654–659. https://doi.org/10.1073/pnas.0604049104
CAS
Article
PubMed
Google Scholar
Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, rist factors and biomarkers. Biochem Pharmacol 88:640–651. https://doi.org/10.1016/j.bcp.2013.12.024.Alzheimer
CAS
Article
PubMed
PubMed Central
Google Scholar
Revel FG, Moreau J-L, Gainetdinov RR et al (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci 108:8485–8490
Article
PubMed
PubMed Central
Google Scholar
Rey E, Hernández-Diáz FJ, Abreu P et al (2001) Dopamine induces intracellular Ca2+ signals mediated by alpha1B-adrenoceptors in rat pineal cells. Eur J Pharmacol 430:9–17
Article
CAS
PubMed
Google Scholar
Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236
Article
CAS
PubMed
Google Scholar
Romano N, Yip SH, Hodson DJ et al (2013) Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci 33:4424–4433. https://doi.org/10.1523/JNEUROSCI.4415-12.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Roos RAC (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40
Article
PubMed
PubMed Central
Google Scholar
Ross CA, Margolis RL, Reading SAJ et al (2006) Neurobiology of schizophrenia. Neuron 52:139–153
Article
CAS
PubMed
Google Scholar
Rossi M, Fasciani I, Marampon F et al (2017) The first negative allosteric modulator for dopamine D 2 and D 3 receptors, SB269652 may lead to a new generation of antipsychotic drugs. Mol Pharmacol 91:586–594. https://doi.org/10.1124/mol.116.107607
CAS
Article
PubMed
PubMed Central
Google Scholar
Sahin B, Hawasli AH, Greene RW et al (2008) Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C. Eur J Pharmacol 581:270–275. https://doi.org/10.1016/j.ejphar.2007.11.061
CAS
Article
PubMed
PubMed Central
Google Scholar
Sahu A, Tyeryar KR, Vongtau HO et al (2009) D5 dopamine receptors are required for dopaminergic activation of phospholipase C. Mol Pharmacol 75:447–453
Article
CAS
PubMed
Google Scholar
Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485
Article
CAS
PubMed
PubMed Central
Google Scholar
Sams-Dodd F (1998) Effects of dopamine agonists and antagonists on PCP-induced stereotyped behaviour and social isolation in the rat social interaction test. Psychopharmacology 135:182–193
Article
CAS
PubMed
Google Scholar
Savasta M, Dubois A, Scatton B (1986) Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res 375:291–301
Article
CAS
PubMed
Google Scholar
Scheid M, Woodgett J (2001) PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2:760–768. https://doi.org/10.1038/35096067
CAS
Article
PubMed
Google Scholar
Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 40:190
Article
PubMed
Google Scholar
Schrag A, Ben-Shlomo Y, Quinn NP (2000) Cross sectional prevalence survey of idiopathic Parkinson’s disease and Parkinsonism in London. Bmj 321:21–22
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27
Article
CAS
PubMed
Google Scholar
Sedaghat K, Nantel M-F, Ginsberg S et al (2006) Molecular characterization of dopamine D2 receptor isoforms tagged with green fluorescent protein. Mol Biotechnol 34:1–14. https://doi.org/10.1385/MB:34:1:1
CAS
Article
PubMed
Google Scholar
Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci 72:4376–4380. https://doi.org/10.1073/pnas.72.11.4376
CAS
Article
PubMed
PubMed Central
Google Scholar
Seeman P, Weinshenker D, Quirion R et al (2005) Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proc Natl Acad Sci 102:3513–3518. https://doi.org/10.1073/pnas.0409766102
CAS
Article
PubMed
PubMed Central
Google Scholar
Seeman P, Ko F, Jack E et al (2007) Consistent with dopamine supersensitivity, RGS9 expression is diminished in the amphetamine-treated animal model of schizophrenia and in postmortem schizophrenia brain. Synapse 61:303–309. https://doi.org/10.1002/syn.20368
CAS
Article
PubMed
Google Scholar
Segura-Aguilar J, Huenchuguala S (2018) Aminochrome induces irreversible mitochondrial dysfunction by inducing autophagy dysfunction in Parkinson’s disease. Front Neurosci 12:106
Article
PubMed
PubMed Central
Google Scholar
Segura-Aguilar J, Paris I, Munoz P et al (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129:898–915. https://doi.org/10.1111/jnc.12686
CAS
Article
PubMed
Google Scholar
Shaywitz BA, Yager RD, Klopper JH (1976) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191:305–308
Article
CAS
PubMed
Google Scholar
Shioda N (2017) Dopamine D2L receptor-interacting proteins regulate dopaminergic signaling. J Pharmacol Sci 135:51–54. https://doi.org/10.1016/j.jphs.2017.10.002
CAS
Article
Google Scholar
Silvano E, Millan MJ, Mannoury C et al (2010) The tetrahydroisoquinoline derivative SB269,652 Is an allosteric antagonist at dopamine D3 and D2 receptors. Mol Pharmacol 78:925–934. https://doi.org/10.1124/mol.110.065755
CAS
Article
PubMed
PubMed Central
Google Scholar
Simon V, Czobor P, Bálint S et al (2009) Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry 194:204–211
Article
PubMed
Google Scholar
Skagerberg G, Björklund A, Lindvall O, Schmidt RH (1982) Origin and termination of the diencephalo-spinal dopamine system in the rat. Brain Res Bull 9:237–244
Article
CAS
PubMed
Google Scholar
So CH, Varghese G, Curley KJ et al (2005) D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol Pharmacol 68:568–578. https://doi.org/10.1124/mol.105.012229.the
CAS
Article
PubMed
Google Scholar
So CH, Verma V, Alijaniaram M et al (2009) Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers. Mol Pharmacol 75:843–854. https://doi.org/10.1124/mol.108.051805
CAS
Article
PubMed
PubMed Central
Google Scholar
Sourkes TL (2009) The discovery of neurotransmitters, and applications to neurology. Handb Clin Neurol 95:869–883
Article
Google Scholar
Spector S, Sjoerdsma A, Udenfriend S (1965) Blockade of endogenous norepinephrine synthesis by $α$-methyl-tyrosine, an inhibitor of tyrosine hydroxylase. J Pharmacol Exp Ther 147:86–95
CAS
PubMed
Google Scholar
Spillantini MG, Schmidt ML, Lee VM-Y et al (1997) α-Synuclein in Lewy bodies. Nature 388:839
Article
CAS
PubMed
Google Scholar
Stahl SM (1985) Platelets as pharmacologic models for the receptors and biochemistry of monoaminergic neurons. In: The platelets: physiology and pharmacology. Academic Press, New York, pp 307–335
Starke K (2014) History of catecholamine research. Chem Immunol Allergy 100:288–301
Article
PubMed
Google Scholar
Stefani A, Pierantozzi M, Olivola E et al (2017) Homovanillic acid in CSF of mild stage Parkinson’s disease patients correlates with motor impairment. Neurochem Int 105:58–63
Article
CAS
PubMed
Google Scholar
Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263:390–393
Article
CAS
PubMed
Google Scholar
Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527
Article
PubMed
PubMed Central
Google Scholar
Stern JM, Taylor LA (1991) Haloperidol inhibits maternal retrieval and licking, but enhances nursing behavior and litter weight gains in lactating rats. J Neuroendocrinol 3:591–596
Article
CAS
PubMed
Google Scholar
Stinus L, Herman JP, Le Moal M (1982) GABAergic mechanisms within the ventral tegmental area: involvement of dopaminergic (A 10) and non-dopaminergic neurones. Psychopharmacology 77:186–192
Article
CAS
PubMed
Google Scholar
Stipanovich A, Valjent E, Matamales M et al (2008) A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature 453:879–884. https://doi.org/10.1038/nature06994
CAS
Article
PubMed
PubMed Central
Google Scholar
Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665
Article
CAS
PubMed
Google Scholar
Stolzenberg DS, Zhang KY, Luskin K et al (2010) Dopamine D1 receptor activation of adenylyl cyclase, not phospholipase C, in the nucleus accumbens promotes maternal behavior onset in rats. Horm Behav 57:96–104. https://doi.org/10.1016/j.yhbeh.2009.09.014
CAS
Article
PubMed
Google Scholar
Stryker S (1925) Encephalitis lethargica—the behavior residuals. Train Sch Bull (Vinel) 22:152–157
Google Scholar
Surmeier DJ, Ding J, Day M et al (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235
Article
CAS
PubMed
Google Scholar
Svenningsson P, Nishi A, Fisone G et al (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296. https://doi.org/10.1146/annurev.pharmtox.44.101802.121415
CAS
Article
PubMed
Google Scholar
Swift JL, Godin AG, Doré K et al (2011) Quantification of receptor tyrosine kinase transactivation through direct dimerization and surface density measurements in single cells. Proc Natl Acad Sci USA 108:7016–7021. https://doi.org/10.1073/pnas.1018280108
Article
PubMed
PubMed Central
Google Scholar
Takano H, Cancel G, Ikeuchi T et al (1998) Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet 63:1060–1066
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan ML, Basu D, Kwiecien JM et al (2013) Preclinical pharmacokinetic and toxicological evaluation of MIF-1 peptidomimetic, PAOPA: Examining the pharmacology of a selective dopamine D2 receptor allosteric modulator for the treatment of schizophrenia. Peptides 42:89–96. https://doi.org/10.1016/j.peptides.2013.02.004
CAS
Article
PubMed
Google Scholar
Tanda G, Frau R, Di Chiara G (1995) Local 5HT 3 receptors mediate fluoxetine but not desipramine-induced increase of extracellular dopamine in the prefrontal cortex. Psychopharmacology 119:15–19
Article
CAS
PubMed
Google Scholar
Tang T-S, Chen X, Liu J, Bezprozvanny I (2007) Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J Neurosci 27:7899–7910
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183. https://doi.org/10.1038/nrn1346
CAS
Article
PubMed
Google Scholar
Tiberi M, Nash SR, Bertrand L et al (1996) Differential regulation of dopamine D1A receptor responsiveness by various G protein-coupled receptor kinases. J Biol Chem 271:3771–3778. https://doi.org/10.1074/jbc.271.7.3771
CAS
Article
PubMed
Google Scholar
Trincavelli ML, Daniele S, Orlandini E et al (2012) A new D2 dopamine receptor agonist allosterically modulates A(2A) adenosine receptor signalling by interacting with the A(2A)/D2 receptor heteromer. Cell Signal 24:951–960. https://doi.org/10.1016/j.cellsig.2011.12.018
CAS
Article
PubMed
Google Scholar
Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76:33–50. https://doi.org/10.1016/j.neuron.2012.09.023
CAS
Article
PubMed
PubMed Central
Google Scholar
Udenfriend S, Wyngaarden JB (1956) Precursors of adrenal epinephrine and norepinephrine in vivo. Biochim Biophys Acta 20:48–52
Article
CAS
PubMed
Google Scholar
Ugi S, Imamura T, Maegawa H et al (2004) Protein phosphatase 2A negatively regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol Cell Biol 24:8778–8789. https://doi.org/10.1128/MCB.24.19.8778-8789.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Undie AS, Weinstock J, Sarau HM, Friedman E (1994) Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. J Neurochem 62:2045–2048. https://doi.org/10.1046/j.1471-4159.1994.62052045.x
CAS
Article
PubMed
Google Scholar
Urs NM, Peterson SM, Caron MG (2017) New concepts in dopamine D2 receptor biased signaling and implications for schizophrenia therapy. Biol Psychiatry 81:78–85. https://doi.org/10.1016/j.biopsych.2016.10.011
CAS
Article
PubMed
Google Scholar
Valentini V, Cacciapaglia F, Frau R, Di Chiara G (2006) Differential alpha2-mediated inhibition of dopamine and noradrenaline release in the parietal and occipital cortex following noradrenaline transporter blockade. J Neurochem 98:113–121
Article
CAS
PubMed
Google Scholar
Valjent E, Corvol JC, Pages C et al (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 20:8701–8709 doi: 20/23/8701 [pii]
Article
CAS
PubMed
PubMed Central
Google Scholar
Valjent E, Pascoli V, Svenningsson P et al (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci 102:491–496. https://doi.org/10.1073/pnas.0408305102
CAS
Article
PubMed
Google Scholar
Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132
Article
CAS
PubMed
Google Scholar
Van Tol HH, Bunzow JR, Guan HC et al (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614. https://doi.org/10.1038/350610a0
Article
PubMed
Google Scholar
Venton BJ, Zhang H, Garris PA et al (2003) Real-time decoding of dopamine concentration changes in the caudate–putamen during tonic and phasic firing. J Neurochem 87:1284–1295. https://doi.org/10.1046/j.1471-4159.2003.02109.x
CAS
Article
PubMed
Google Scholar
Veselinović T, Paulzen M, Gründer G (2013) Cariprazine, a new, orally active dopamine D2/3 receptor partial agonist for the treatment of schizophrenia, bipolar mania and depression. Expert Rev Neurother 13:1141–1159. https://doi.org/10.1586/14737175.2013.853448
CAS
Article
PubMed
Google Scholar
Viggiano D, Grammatikopoulos G, Sadile AG (2002) A morphometric evidence for a hyperfunctioning mesolimbic system in an animal model of ADHD. Behav Brain Res 130:181–189
Article
CAS
PubMed
Google Scholar
Volkow ND, Fowler JS, Wang GJ et al (2009) Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 56:3–8
Article
CAS
PubMed
Google Scholar
von Euler U (1946) A Specific Sympathomimetic Ergone in Adrenergic Nerve Fibres (Sympathin) and its Relations to Adrenaline and Nor-Adrenaline. Acta Physiol Scand 12:73–97. https://doi.org/10.1111/j.1748-1716.1946.tb00368.x doi
Article
Google Scholar
Voogt JL, Lee Y, Yang S, Arbogast L (2001) Regulation of prolactin secretion during pregnancy and lactation. Prog Brain Res 133:173–185
Article
CAS
PubMed
Google Scholar
Walaas SI, Aswad DW, Greengard P (1983) A dopamine-and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301:69
Article
CAS
PubMed
Google Scholar
Walker FO (2007) Huntington’s disease. Lancet 369:218–228
Article
CAS
PubMed
Google Scholar
Wamsley JK, Gehlert DR, Filloux FM, Dawson TM (1989) Comparison of the distribution of D-1 and D-2 dopamine receptors in the rat brain. J Chem Neuroanat 2:119–137
CAS
PubMed
Google Scholar
Wang G-J, Volkow ND, Logan J et al (2001) Brain dopamine and obesity. Lancet 357:354–357
Article
CAS
PubMed
Google Scholar
Wang H, Farhan M, Xu J et al (2017) The involvement of darpp-32 in the pathophysiology of schizophrenia. Oncotarget 8:53791
PubMed
PubMed Central
Google Scholar
Watabe-Uchida M, Zhu L, Ogawa SK et al (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74:858–873
Article
CAS
PubMed
Google Scholar
Wauquier A, Rolls ET (1976) Brain-stimulation reward. North-Holland, Amsterdam
Google Scholar
Weinshilboum RM, Thoa NB, Johnson DG et al (1971) Proportional release of norepinephrine and dopamine-$β$-hydroxylase from sympathetic nerves. Science 174:1349–1351
Article
CAS
PubMed
Google Scholar
Welsh GI, Hall D, Warnes A et al (1998) Activation of microtubule-associated protein kinase (Erk) and p70 S6 kinase by D2 dopamine receptors. J Neurochem 70:2139–2146
Article
CAS
PubMed
Google Scholar
Werhahn KJ, Kunesch E, Noachtar S et al (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517:591–597
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitehouse PJ, Martino AM, Antuono PG et al (1986) Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res 371:146–151
Article
CAS
PubMed
Google Scholar
Willems JL, Buylaert WA, Lefebvre RA, Bogaert MG (1985) Neuronal dopamine receptors on autonomic ganglia and sympathetic nerves and dopamine receptors in the gastrointestinal system. Pharmacol Rev 37:165–216
CAS
PubMed
Google Scholar
Williams-Gray CH, Worth PF (2016) Parkinson’s disease. Med (United Kingdom) 44:542–546. https://doi.org/10.1016/j.mpmed.2016.06.001
Article
Google Scholar
Winkelman JW (1999) The evoked heart rate response to periodic leg movements of sleep. Sleep 22:575–580
Article
CAS
PubMed
Google Scholar
Wise RA (2009) Roles for nigrostriatal not just mesocorticolimbic dopamine in reward and addiction. Trends Neurosci 32:517–524
Article
CAS
PubMed
PubMed Central
Google Scholar
Woodard GE, Jardín I, Berna-Erro A et al (2015) Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. Int Rev Cell Mol Biol 317:97–183. https://doi.org/10.1016/bs.ircmb.2015.02.001
CAS
Article
PubMed
Google Scholar
Wright HH, Still CN, Abramson RK (1981) Huntington’s disease in black kindreds in South Carolina. Arch Neurol 38:412–414
Article
CAS
PubMed
Google Scholar
Wurtman RJ, Hefti F, Melamed E (1980) Precursor control of neurotransmitter synthesis. Pharmacol Rev 32:315–335
CAS
PubMed
Google Scholar
Xie Z, Miller GM (2007) Trace amine-associated receptor 1 is a modulator of the dopamine transporter. J Pharmacol Exp Ther 321:128–136
Article
CAS
PubMed
Google Scholar
Xu K, Näveri L, Frerichs KU et al (1993) Extracellular catecholamine levels in rat hippocampus after a selective alpha-2 adrenoceptor antagonist or a selective dopamine uptake inhibitor: evidence for dopamine release from local dopaminergic nerve terminals. J Pharmacol Exp Ther 267:211–217
CAS
PubMed
Google Scholar
Xu W, Wang X, Tocker AM et al (2017) Functional Characterization of a Novel Series of Biased Signaling Dopamine D3 Receptor Agonists. ACS Chem Neurosci 8:486–500. https://doi.org/10.1021/acschemneuro.6b00221
CAS
Article
PubMed
Google Scholar
Yan Z, Song WJ, Surmeier J (1997) D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol 77:1003–1015. https://doi.org/10.1152/jn.1997.77.2.1003
CAS
Article
PubMed
Google Scholar
Yang LI, Wang Y-F, Li JUN, Faraone SV (2004) Association of norepinephrine transporter gene with methylphenidate response. J Am Acad Child Adolesc Psychiatry 43:1154–1158
Article
PubMed
Google Scholar
Yokoyama C, Okamura H, Nakajima T et al (1994) Autoradiographic distribution of [3H]YM-09151-2, a high-affinity and selective antagonist ligand for the dopamine D2 receptor group, in the rat brain and spinal cord. J Comp Neurol 344:121–136. https://doi.org/10.1002/cne.903440109
CAS
Article
PubMed
Google Scholar
Yujnovsky I, Hirayama J, Doi M et al (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc Natl Acad Sci 103:6386–6391. https://doi.org/10.1073/pnas.0510691103
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang W, Klimek V, Farley JT et al (1999) alpha-2C adrenoceptors inhibit adenylyl cyclase in mouse striatum: potential activation by dopamine. J Pharmacol Exp Ther 289:1286–1292
CAS
PubMed
Google Scholar
Zhang W-P, Ouyang M, Thomas SA (2004) Potency of catecholamines and other L-tyrosine derivatives at the cloned mouse adrenergic receptors. Neuropharmacology 47:438–449
Article
CAS
PubMed
Google Scholar
Zheng W, Zeng Z, Bhardwaj SK et al (2013) Lithium normalizes amphetamine-induced changes in striatal FoxO1 phosphorylation and behaviors in rats. Neuroreport 24:560–565
Article
CAS
PubMed
Google Scholar
Zion IZB, Tessler R, Cohen L et al (2006) Polymorphisms in the dopamine D4 receptor gene (DRD4) contribute to individual differences in human sexual behavior: desire, arousal and sexual function. Mol Psychiatry 11:782
Article
CAS
PubMed
Google Scholar
Zucchi R, Chiellini G, Scanlan TS, Grandy DK (2006) Trace amine-associated receptors and their ligands. Br J Pharmacol 149:967–978
Article
CAS
PubMed
PubMed Central
Google Scholar