Skip to main content
Log in

Oxidative Imbalance, Nitrative Stress, and Inflammation in C6 Glial Cells Exposed to Hexacosanoic Acid: Protective Effect of N-acetyl-l-cysteine, Trolox, and Rosuvastatin

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder caused by disfunction of the ABCD1 gene, which encodes a peroxisomal protein responsible for the transport of the very long-chain fatty acids from the cytosol into the peroxisome, to undergo β-oxidation. The mainly accumulated saturated fatty acids are hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in tissues and body fluids. This peroxisomal disorder occurs in at least 1 out of 20,000 births. Considering that pathophysiology of this disease is not well characterized yet, and glial cells are widely used in studies of protective mechanisms against neuronal oxidative stress, we investigated oxidative damages and inflammatory effects of vesicles containing lecithin and C26:0, as well as the protection conferred by N-acetyl-l-cysteine (NAC), trolox (TRO), and rosuvastatin (RSV) was assessed. It was verified that glial cells exposed to C26:0 presented oxidative DNA damage (measured by comet assay and endonuclease III repair enzyme), enzymatic oxidative imbalance (high catalase activity), nitrative stress [increased nitric oxide (NO) levels], inflammation [high Interleukin-1beta (IL-1β) levels], and induced lipid peroxidation (increased isoprostane levels) compared to native glial cells without C26:0 exposure. Furthermore, NAC, TRO, and RSV were capable to mitigate some damages caused by the C26:0 in glial cells. The present work yields experimental evidence that inflammation, oxidative, and nitrative stress may be induced by hexacosanoic acid, the main accumulated metabolite in X-ALD, and that antioxidants might be considered as an adjuvant therapy for this severe neurometabolic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BMT:

Bone marrow transplant

CAT:

Catalase

C22:0:

Docosanoic acid

C24:0:

Tetracosanoic acid

C26:0:

Hexacosanoic acid

C27:0:

Heptacosanoic acid

CCER:

Childhood cerebral form

Endo III:

Endonuclease III

GPx:

Glutathione peroxidase

H2O2 :

Hydrogen peroxide

HTZ:

Heterozygotes

IL:

Interleukin

IL-1β:

Interleukin-1beta

LPS:

Lipopolysaccharide

PBS:

Phosphate buffer saline

NAC:

N-acetyl-l-cysteine

NO:

Nitric oxide

\({\text{NO}}_{3}^{ - }\) :

Nitrate

\({\text{NO}}_{2}^{ - }\) :

Nitrite

\({\text{O}}_{2}^{{\cdot - }}\) :

Superoxide anion

SEM:

Standard error of mean

RSV:

Rosuvastatin

SOD:

Superoxide dismutase

TRO:

Trolox

VLCFA:

Very long-chain fatty acid

X-ALD:

X-linked adrenoleukodystrophy

References

  • Berger J, Forss-Petter S, Eichler FS (2014) Pathophysiology of X-linked adrenoleukodystrophy. Biochimie 98:135–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke MS, Olinski R, Evans MD (2006) Does measurement of oxidative damage to DNA have clinical significance? Clin Chim Acta 365:30–49

    Article  CAS  PubMed  Google Scholar 

  • Deon M, Sitta A, Barschak AG, Coelho D, Pigatto M, Schimitt G et al (2007) Introduction of lipid peroxidation and decrease of antioxidant defenses in symptomatic and asymptomatic patients with X-linked adrenoleukodystrophy. Int J Dev Neurosci 25:441–444

    Article  CAS  PubMed  Google Scholar 

  • Deon M, Garcia MP, Sitta A, Barschak AG, Coelho D, Schimitt G et al (2008a) Hexacosanoic and docosanoic acids plasma levels in patients with cerebral childhood and asymptomatic X-linked adrenoleukodystrophy: Lorenzo’s oil effect. Metab Brain Dis 23:43–49

    Article  CAS  PubMed  Google Scholar 

  • Deon M, Sitta A, Barschak AG, Coelho D, Terroso T, Schimitt GO et al (2008b) Oxidative stress is induced in female carriers of X-linked adrenoleukodystrophy. J Neurol Sci 266:79–83

    Article  CAS  PubMed  Google Scholar 

  • Di Biase A, Di Benedetto R, Fiorentini C, Travaglione S, Salvati S, Attorri L, Pietraforte D (2004) Free radical release in C6 glial cells enriched in hexacosenoic acid: implication for X-linked adrenoleukodystrophy pathogenesis. Neurochem Int 44:215–221

    Article  PubMed  Google Scholar 

  • Di Biase A, Benedetto R, Salvati S, Attorri L, Leonardi F, Pietraforte D (2005) Effects of l-mono methyl-arginine, N-acetyl-l-cysteine and diphenyleniodonium on free radical release in C6 glial cells enriched in hexacosanoic acid. Neurochem Res 30(2):215–223

    Article  PubMed  Google Scholar 

  • Dizdaroglu M, Laval J, Boiteux S (1993) Substrate specificity of the Escherichia coli endonuclease III: excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry 32:12105–12111

    Article  CAS  PubMed  Google Scholar 

  • Dringen R, Gutterer JM, Hirrlinger J (2000) Metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916

    Article  CAS  PubMed  Google Scholar 

  • Engelen M, Barbier M, Dijkstra IM, Schür R, de Bie RM, Verhamme C et al (2014) X-linked adrenoleukodystrophy in women: a cross-sectional cohort study. Brain 137:693–706

    Article  PubMed  Google Scholar 

  • Fourcade S, López-Erauskin J, Galino J, Duval C, Naudi A, Jove M et al (2008) Early oxidative damage underlying neurodegenaration in X-adrenoleukodystrophy. Hum Mol Genet 17:1762–1773

    Article  CAS  PubMed  Google Scholar 

  • Fourcade S, Ferrer I, Pujol A (2015) Oxidative stress, mitochondrial and proteostasis malfunction in adrenoleukodystrophy: a paradigm for axonal degeneration. Free Radic Biol Med 88:18–29

    Article  CAS  PubMed  Google Scholar 

  • Glezer I, Simard AR, Rivest S (2007) Neuroprotective role of the innate immune system by microglia. Neuroscience 147:867–883

    Article  CAS  PubMed  Google Scholar 

  • Habekost CT, Schestatsky P, Torres VF, de Coelho DM, Vargas CR, Torrez V et al (2014) Neurological impairment among heterozygote women for X-linked adrenoleukodystrophy: a case–control study on a clinical, neurophysiological and biochemical characteristics. Orphanet J Rare Dis 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4 edn. Oxford University, Oxford

    Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    Article  PubMed  Google Scholar 

  • Hathaway WE, Newby LA et al (1964) The acridine orange viability test applied to bone marrow cells. I. Correlation with trypan blue and eosin dye exclusion and tissue culture transformation. Blood 23:517–525

    CAS  PubMed  Google Scholar 

  • Hein S, Schonfeld P, Kahlert S, Reiser G (2008) Toxic effects of X-linked adrenoleukodystrophy associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture. Hum Mol Genet 17:1750–1761

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR (2004) Glial cells. Int J Biochem Cell Biol 36:1861–1867

    Article  CAS  PubMed  Google Scholar 

  • Kemp S, Wanders R (2010) Biochemical aspects of X-linked adrenoleukodystrophy. Brain Pathol 20:831–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp S, Berger J, Aubourg P (2012) X-linked adrenoleukodystrophy: clinical, metabolic, genetic and pathophysiological aspects. Biochim Biophys Acta 1822:1465–1474

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Ahn Y, Hong MH et al (2007) Rosuvastatin suppresses the Inflammatory responses through inhibition of c-Jun N-terminal kinase and nuclear factor-kB in endothelial cells. J Cardiovasc Pharmacol 49(6):376–383

    Article  CAS  PubMed  Google Scholar 

  • Kruska N, Schönfeld P, Pujol A, Reiser G (2015) Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions. Biochim Biophys Acta 1852:925–936

    Article  CAS  PubMed  Google Scholar 

  • Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    CAS  PubMed  Google Scholar 

  • Mangoura D, Sakellaridis N, Jones J, Vernadakis A (1989) Early and late passage C-6 glial cell growth: similarities with primary glial cells in culture. Neurochem Res 14(10):941–947

    Article  CAS  PubMed  Google Scholar 

  • Marchetti DP, Donida B, da Rosa HT, Manini PR, Moura DJ, Saffi J, Deon M, Mescka CP, Daniella Coelho DM, Jardim LB, Vargas CR (2015) Protective effect of antioxidants on DNA damage in leukocytes from X-linked adrenoleukodystrophy patient. Int J Dev Neurosci 43:8–15

    Article  CAS  PubMed  Google Scholar 

  • Marchetti DP, Donida B, Jacques CE, Deon M, Hauschild TC, Koehler-Santos P, de Moura Coelho D et al (2018) Inflammatory profile in X-linked adrenoleukodystrophy patients: understanding disease progression. J Cell Biochem 119(1):1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Messier EM, Bahmed K, Tuder RM, Chu HW, Bowler RP, Kosmider B (2013) Trolox contributes to Nrf2-mediated protection of human and murine primary alveolar type II cells from injury by cigarette smoke. Cell Death Dis 4:e573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    CAS  PubMed  Google Scholar 

  • Moraes MC, Neto JB, Menck CF (2012) DNA repair mechanisms protect our genome from carcinogenesis. Front Biosci 17:1362–1388

    Article  CAS  Google Scholar 

  • Moser HW, Moser AB (1991) Measurement of saturated very long chain fattyacid in plasma. In: Hommes FA (ed) Techniques of diagnostic human biochemical genetics. Wiley-Liss, New York

    Google Scholar 

  • Moser HW, Smith KD, Watkins PA, Powers J, Moser AB (2001) X-linked adrenoleukodystrophy. In: Scriver CR, Beaude AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, p 3257–3301

    Google Scholar 

  • Moser HW, Mahmood A, Raymond GV (2007) X-linked adrenoleukodystrophy. Nat Clin Pract Neurol 3:140–151

    Article  PubMed  Google Scholar 

  • Opere CA, Ford K, Zhao M, Ohia SE (2008) Regulation of neurotransmitter release from ocular tissues by isoprostanes. Methods Find Exp Clin Pharmacol 30(9):697–701

    Article  CAS  PubMed  Google Scholar 

  • Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3(7):1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Rockenbach FJ, Deon M, Marchese DP et al (2012) The effect of bone marrow transplantation on oxidative stress in X-linked adrenoleukodystrophy. Mol Genet Metab 106:231–236

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  PubMed  Google Scholar 

  • Taner G, Yeşilöz R, Vardar DO, Şenyiğit T, Özer O, Degen GH, Başaran N (2014) Evaluation of the cytotoxic and genotoxic potential of lecithin/chitosan nanoparticles. J Nanopart Res 16:2220

    Article  Google Scholar 

  • Tolar J, Orchard PJ, Bjoraker KJ, Ziegler RS, Shapiro EG, Charnas L (2007) N-acetyl-l-cysteine improves outcome of advanced cerebral adrenoleukodystrophy. Bone Marrow Transpl 39:211–215

    Article  CAS  Google Scholar 

  • van de Beek M, Ofmana R, Dijkstra I et al (2017) Lipid-induced endoplasmic reticulum stress in X-linked adrenoleukodystrophy. Biochim Biophys Acta 1863(9):2255–2265

    Article  Google Scholar 

  • Vargas CR, Wajner M, Sirtori LR, Goulart L, Chiochetta M, Coelho D et al (2004) Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta 1688:26–32

    Article  CAS  PubMed  Google Scholar 

  • Virarkar M, Alappat L, Bradford PG, Awad AB (2013) l-arginine and nitric oxide in CNS function and neurodegenerative diseases. Crit Rev Food Sci Nutr 53(11):1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Xu ZH, Wu QY (2009) Effect of lecithin content blend with poly(l-lactic acid) on viability and proliferation of mesenchymal stem cells. Mater Sci Eng C 29:1593–1598

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Brazilian Foundation Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundo de Incentivo à Pesquisa e Eventos (FIPE/HCPA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Desirèe Padilha Marchetti or Carmen R. Vargas.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

The study was approved by the Ethics Committee of Hospital de Clínicas de Porto Alegre (Number 15-0487).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchetti, D.P., Steffens, L., Jacques, C.E. et al. Oxidative Imbalance, Nitrative Stress, and Inflammation in C6 Glial Cells Exposed to Hexacosanoic Acid: Protective Effect of N-acetyl-l-cysteine, Trolox, and Rosuvastatin. Cell Mol Neurobiol 38, 1505–1516 (2018). https://doi.org/10.1007/s10571-018-0626-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-018-0626-1

Keywords

Navigation