Cellular and Molecular Neurobiology

, Volume 39, Issue 4, pp 493–502 | Cite as

Neuroactive Steroids and Sex-Dimorphic Nervous Damage Induced by Diabetes Mellitus

  • Silvia Giatti
  • Silvia Diviccaro
  • Roberto Cosimo MelcangiEmail author
Review Paper


Diabetes mellitus is a metabolic disease where improper glycaemic control may induce severe complications in different organs. In this review, we will discuss alterations occurring in peripheral and central nervous system of patients with type 1 (i.e., insulin dependent diabetes mellitus,) or type 2 diabetes (i.e., non-insulin dependent diabetes mellitus), as well as related experimental models. A particular focus will be on the role exerted by neuroactive steroids (i.e., important regulators of nervous functions) in the nervous damage induced by diabetes. Indeed, the nervous levels of these molecules are affected by the pathology and, in agreement, their neuroprotective effects have been reported. Interestingly, the sex is another important variable. As discussed, nervous diabetic complications show sex dimorphic features in term of incidence, functional outcomes and neuroactive steroid levels. Therefore, these features represent an interesting background for possible sex-oriented therapies with neuroactive steroids aimed to counteract nervous damage observed in diabetic pathology.


Diabetic peripheral neuropathy Diabetic encephalopathy Sex difference Myelin Neuroprotection 



We acknowledge support from MIUR-Progetto Eccellenza, Fondazione Cariplo to R.C.M. (Grant Number 2012-0547) and from Università degli Studi di Milano to S.G. (intramural Grant line-B).

Author Contributions

All authors listed contributed in this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have not conflict of interest for this manuscript.


  1. Aaberg ML, Burch DM, Hud ZR, Zacharias MP (2008) Gender differences in the onset of diabetic neuropathy. J Diabetes Complicat 22(2):83–87Google Scholar
  2. Abadie JM, Wright B, Correa G, Browne ES, Porter JR, Svec F (1993) Effect of dehydroepiandrosterone on neurotransmitter levels and appetite regulation of the obese Zucker rat. The Obesity Research Program Diabetes 42(5):662–669Google Scholar
  3. Afrazi S, Esmaeili-Mahani S, Sheibani V, Abbasnejad M (2014) Neurosteroid allopregnanolone attenuates high glucose-induced apoptosis and prevents experimental diabetic neuropathic pain: in vitro and in vivo studies. J Steroid Biochem Mol Biol 139:98–103Google Scholar
  4. Albers JW, Brown MB, Sima AA, Greene DA (1996) Nerve conduction measures in mild diabetic neuropathy in the Early Diabetes Intervention Trial: the effects of age, sex, type of diabetes, disease duration, and anthropometric factors. Tolrestat Study Group for the Early Diabetes Intervention Trial. Neurology 46(1):85–91Google Scholar
  5. Andersen K, Launer LJ, Dewey ME, Letenneur L, Ott A, Copeland JR, Dartigues JF, Kragh-Sorensen P, Baldereschi M, Brayne C, Lobo A, Martinez-Lage JM, Stijnen T, Hofman A (1999) Gender differences in the incidence of AD and vascular dementia: the EURODEM Studies. EURODEM Incidence Research Group. Neurology 53(9):1992–1997Google Scholar
  6. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, Craft S, Gandy S, Buettner C, Stoeckel LE, Holtzman DM, Nathan DM (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14(3):168–181Google Scholar
  7. Atif F, Prunty MC, Turan N, Stein DG, Yousuf S (2017) Progesterone modulates diabetes/hyperglycemia-induced changes in the central nervous system and sciatic nerve. Neuroscience 350:1–12Google Scholar
  8. Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM (2016) Diabetes and Alzheimer’s disease crosstalk. Neurosci Biobehav Rev 64:272–287Google Scholar
  9. Baptista FI, Pinto MJ, Elvas F, Almeida RD, Ambrosio AF (2013) Diabetes alters KIF1A and KIF5B motor proteins in the hippocampus. PLoS ONE 8(6):e65515Google Scholar
  10. Basit A, Hydrie MZ, Hakeem R, Ahmedani MY, Masood Q (2004) Frequency of chronic complications of type II diabetes. J Coll Physicians Surg Pak 14(2):79–83Google Scholar
  11. Baulieu EE, Robel P (1990) Neurosteroids: a new brain function? J Steroid Biochem Mol Biol 37(3):395–403Google Scholar
  12. Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6(7):565–575Google Scholar
  13. Bharadwaj P, Wijesekara N, Liyanapathirana M, Newsholme P, Ittner L, Fraser P, Verdile G (2017) The link between type 2 diabetes and neurodegeneration: roles for amyloid-beta, amylin, and tau proteins. J Alzheimers Dis 59(2):421–432Google Scholar
  14. Bianchi R, Buyukakilli B, Brines M, Savino C, Cavaletti G, Oggioni N, Lauria G, Borgna M, Lombardi R, Cimen B, Comelekoglu U, Kanik A, Tataroglu C, Cerami A, Ghezzi P (2004) Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci USA 101(3):823–828Google Scholar
  15. Biessels GJ, Reijmer YD (2014) Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes 63(7):2244–2252Google Scholar
  16. Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45(9):1259–1266Google Scholar
  17. Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1998) Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 800(1):125–135Google Scholar
  18. Biessels GJ, Cristino NA, Rutten GJ, Hamers FP, Erkelens DW, Gispen WH (1999) Neurophysiological changes in the central and peripheral nervous system of streptozotocin-diabetic rats. Course of development and effects of insulin treatment. Brain 122(Pt 4):757–768Google Scholar
  19. Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH (2002) Ageing and diabetes: implications for brain function. Eur J Pharmacol 441(1–2):1–14Google Scholar
  20. Biessels GJ, Deary IJ, Ryan CM (2008) Cognition and diabetes: a lifespan perspective. Lancet Neurol 7(2):184–190Google Scholar
  21. Booya F, Bandarian F, Larijani B, Pajouhi M, Nooraei M, Lotfi J (2005) Potential risk factors for diabetic neuropathy: a case control study. BMC Neurol 5:24Google Scholar
  22. Burul-Bozkurt N, Pekiner C, Kelicen P (2010) Diabetes alters aromatase enzyme levels in sciatic nerve and hippocampus tissues of rats. Cell Mol Neurobiol 30(3):445–451Google Scholar
  23. Calabrese D, Giatti S, Romano S, Porretta-Serapiglia C, Bianchi R, Milanese M, Bonanno G, Caruso D, Viviani B, Gardoni F, Garcia-Segura LM, Melcangi RC (2014) Diabetic neuropathic pain: a role for testosterone metabolites. J Endocrinol 221(1):1–13Google Scholar
  24. Calcutt NA, Chaplan SR (1997) Spinal pharmacology of tactile allodynia in diabetic rats. Br J Pharmacol 122(7):1478–1482Google Scholar
  25. Candeias E, Duarte AI, Sebastiao I, Fernandes MA, Placido AI, Carvalho C, Correia S, Santos RX, Seica R, Santos MS, Oliveira CR, Moreira PI (2017) Middle-aged diabetic females and males present distinct susceptibility to Alzheimer disease-like pathology. Mol Neurobiol 54(8):6471–6489Google Scholar
  26. Carcaillon L, Brailly-Tabard S, Ancelin ML, Rouaud O, Dartigues JF, Guiochon-Mantel A, Scarabin PY (2014) High plasma estradiol interacts with diabetes on risk of dementia in older postmenopausal women. Neurology 82(6):504–511Google Scholar
  27. Cardoso SM, Correia SC, Carvalho C, Moreira PI (2017) Mitochondria in Alzheimer’s disease and diabetes-associated neurodegeneration: license to heal! Handb Exp Pharmacol 240:281–308Google Scholar
  28. Caruso D, Barron AM, Brown MA, Abbiati F, Carrero P, Pike CJ, Garcia-Segura LM, Melcangi RC (2013) Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiol Aging 34:1080–1089Google Scholar
  29. Casanova-Molla J, Morales M, Garrabou G, Sola-Valls N, Soriano A, Calvo M, Grau JM, Valls-Sole J (2012) Mitochondrial loss indicates early axonal damage in small fiber neuropathies. J Peripher Nerv Syst 17(2):147–157Google Scholar
  30. Cashman CR, Hoke A (2015) Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 596:33–50Google Scholar
  31. Cermenati G, Giatti S, Cavaletti G, Bianchi R, Maschi O, Pesaresi M, Abbiati F, Volonterio A, Saez E, Caruso D, Melcangi RC, Mitro N (2010) Activation of the liver X receptor increases neuroactive steroid levels and protects from diabetes-induced peripheral neuropathy. J Neurosci 30(36):11896–11901Google Scholar
  32. Cermenati G, Abbiati F, Cermenati S, Brioschi E, Volonterio A, Cavaletti G, Saez E, De Fabiani E, Crestani M, Garcia-Segura LM, Melcangi RC, Caruso D, Mitro N (2012) Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. J Lipid Res 53(2):300–310Google Scholar
  33. Cermenati G, Giatti S, Audano M, Pesaresi M, Spezzano R, Caruso D, Mitro N, Melcangi RC (2017) Diabetes alters myelin lipid profile in rat cerebral cortex: protective effects of dihydroprogesterone. J Steroid Biochem Mol Biol 168:60–70Google Scholar
  34. Chandel A, Dhindsa S, Topiwala S, Chaudhuri A, Dandona P (2008) Testosterone concentration in young patients with diabetes. Diabetes Care 31(10):2013–2017Google Scholar
  35. Chen X, Levine JD (2001) Hyper-responsivity in a subset of C-fiber nociceptors in a model of painful diabetic neuropathy in the rat. Neuroscience 102(1):185–192Google Scholar
  36. Chen X, Levine JD (2003) Altered temporal pattern of mechanically evoked C-fiber activity in a model of diabetic neuropathy in the rat. Neuroscience 121(4):1007–1015Google Scholar
  37. Chen SR, Pan HL (2002) Hypersensitivity of spinothalamic tract neurons associated with diabetic neuropathic pain in rats. J Neurophysiol 87(6):2726–2733Google Scholar
  38. Chowdhury SK, Zherebitskaya E, Smith DR, Akude E, Chattopadhyay S, Jolivalt CG, Calcutt NA, Fernyhough P (2010) Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes 59(4):1082–1091Google Scholar
  39. Cummins CL, Mangelsdorf DJ (2006) Liver X receptors and cholesterol homoeostasis: spotlight on the adrenal gland. Biochem Soc Trans 34(Pt 6):1110–1113Google Scholar
  40. Edwards JL, Quattrini A, Lentz SI, Figueroa-Romero C, Cerri F, Backus C, Hong Y, Feldman EL (2010) Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53(1):160–169Google Scholar
  41. Escames G, Diaz-Casado ME, Doerrier C, Luna-Sanchez M, Lopez LC, Acuna-Castroviejo D (2013) Early gender differences in the redox status of the brain mitochondria with age: effects of melatonin therapy. Horm Mol Biol Clin Investig 16(2):91–100Google Scholar
  42. Espeland MA, Brinton RD, Hugenschmidt C, Manson JE, Craft S, Yaffe K, Weitlauf J, Vaughan L, Johnson KC, Padula CB, Jackson RD, Resnick SM, Group WS (2015a) Impact of type 2 diabetes and postmenopausal hormone therapy on incidence of cognitive impairment in older women. Diabetes Care 38(12):2316–2324Google Scholar
  43. Espeland MA, Brinton RD, Manson JE, Yaffe K, Hugenschmidt C, Vaughan L, Craft S, Edwards BJ, Casanova R, Masaki K, Resnick SM, Group W-MS (2015b) Postmenopausal hormone therapy, type 2 diabetes mellitus, and brain volumes. Neurology 85(13):1131–1138Google Scholar
  44. Farace E, Alves WM (2000) Do women fare worse: a metaanalysis of gender differences in traumatic brain injury outcome. J Neurosurg 93(4):539–545Google Scholar
  45. Fernyhough P (2015) Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diabetes Rep 15(11):89Google Scholar
  46. Fernyhough P, Roy Chowdhury SK, Schmidt RE (2010) Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab 5(1):39–49Google Scholar
  47. Fratiglioni L, Viitanen M, von Strauss E, Tontodonati V, Herlitz A, Winblad B (1997) Very old women at highest risk of dementia and Alzheimer’s disease: incidence data from the Kungsholmen Project. Stockholm Neurology 48(1):132–138Google Scholar
  48. Gaignard P, Savouroux S, Liere P, Pianos A, Therond P, Schumacher M, Slama A, Guennoun R (2015) Effect of sex differences on brain mitochondrial function and its suppression by ovariectomy and in aged mice. Endocrinology 156(8):2893–2904Google Scholar
  49. Gaspar JM, Baptista FI, Macedo MP, Ambrosio AF (2016) Inside the diabetic brain: role of different players involved in cognitive decline. ACS Chem Neurosci 7(2):131–142Google Scholar
  50. Giatti S, Pesaresi M, Cavaletti G, Bianchi R, Carozzi V, Lombardi R, Maschi O, Lauria G, Garcia-Segura LM, Caruso D, Melcangi RC (2009) Neuroprotective effects of a ligand of translocator protein-18 kDa (Ro5-4864) in experimental diabetic neuropathy. Neuroscience 164:520–529Google Scholar
  51. Giatti S, Garcia-Segura LM, Melcangi RC (2015) New steps forward in the neuroactive steroid field. J Steroid Biochem Mol Biol 153:127–134Google Scholar
  52. Giatti S, Mastrangelo R, D’Antonio M, Pesaresi M, Romano S, Diviccaro S, Caruso D, Mitro N, Melcangi RC (2018) Neuroactive steroids and diabetic complications in the nervous system. Front Neuroendocrinol 48:58–69Google Scholar
  53. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23(11):542–549Google Scholar
  54. Guevara R, Gianotti M, Roca P, Oliver J (2011) Age and sex-related changes in rat brain mitochondrial function. Cell Physiol Biochem 27(3–4):201–206Google Scholar
  55. Handa RJ, Pak TR, Kudwa AE, Lund TD, Hinds L (2008) An alternate pathway for androgen regulation of brain function: activation of estrogen receptor beta by the metabolite of dihydrotestosterone, 5alpha-androstane-3beta,17beta-diol. Horm Behav 53(5):741–752Google Scholar
  56. Hempel R, Onopa R, Convit A (2012) Type 2 diabetes affects hippocampus volume differentially in men and women. Diabetes Metab Res Rev 28(1):76–83Google Scholar
  57. Hernandez-Fonseca JP, Rincon J, Pedreanez A, Viera N, Arcaya JL, Carrizo E, Mosquera J (2009) Structural and ultrastructural analysis of cerebral cortex, cerebellum, and hypothalamus from diabetic rats. Exp Diabetes Res 2009:329632Google Scholar
  58. Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, Muhlfeld A, Koelling M, Pippin JW, Shankland SJ, Askari B, Rabaglia ME, Keller MP, Attie AD, Alpers CE (2010) BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol 21(9):1533–1542Google Scholar
  59. Jacobson AM, Samson JA, Weinger K, Ryan CM (2002) Diabetes, the brain, and behavior: is there a biological mechanism underlying the association between diabetes and depression? Int Rev Neurobiol 51:455–479Google Scholar
  60. Joseph EK, Levine JD (2003) Sexual dimorphism in the contribution of protein kinase C isoforms to nociception in the streptozotocin diabetic rat. Neuroscience 120(4):907–913Google Scholar
  61. Kalocayova B, Mezesova L, Bartekova M, Vlkovicova J, Jendruchova V, Vrbjar N (2017) Properties of Na,K-ATPase in cerebellum of male and female rats: effects of acute and prolonged diabetes. Mol Cell Biochem 425(1–2):25–36Google Scholar
  62. Kamal A, Biessels GJ, Gispen WH, Ramakers GM (2006) Synaptic transmission changes in the pyramidal cells of the hippocampus in streptozotocin-induced diabetes mellitus in rats. Brain Res 1073–1074:276–280Google Scholar
  63. Kawashima R, Kojima H, Nakamura K, Arahata A, Fujita Y, Tokuyama Y, Saito T, Furudate S, Kurihara T, Yagishita S, Kitamura K, Tamai Y (2007) Alterations in mRNA expression of myelin proteins in the sciatic nerves and brains of streptozotocin-induced diabetic rats. Neurochem Res 32(6):1002–1010Google Scholar
  64. Kaye W (2008) Neurobiology of anorexia and bulimia nervosa. Physiol Behav 94(1):121–135Google Scholar
  65. Kiziltan ME, Benbir G (2008) Clinical and electrophysiological differences in male and female patients with diabetic foot. Diabetes Res Clin Pract 79(1):e17–e18Google Scholar
  66. Kiziltan ME, Gunduz A, Kiziltan G, Akalin MA, Uzun N (2007) Peripheral neuropathy in patients with diabetic foot ulcers: clinical and nerve conduction study. J Neurol Sci 258(1–2):75–79Google Scholar
  67. Kodl CT, Seaquist ER (2008) Cognitive dysfunction and diabetes mellitus. Endocr Rev 29(4):494–511Google Scholar
  68. Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71(1):67–80Google Scholar
  69. Lambert JJ, Cooper MA, Simmons RD, Weir CJ, Belelli D (2009) Neurosteroids: endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 34(Suppl 1):S48–S58Google Scholar
  70. Lauria G, Lombardi R, Borgna M, Penza P, Bianchi R, Savino C, Canta A, Nicolini G, Marmiroli P, Cavaletti G (2005) Intraepidermal nerve fiber density in rat foot pad: neuropathologic-neurophysiologic correlation. J Peripher Nerv Syst 10(2):202–208Google Scholar
  71. Leibowitz SF (1987) Hypothalamic neurotransmitters in relation to normal and disturbed eating patterns. Ann NY Acad Sci 499:137–143Google Scholar
  72. Leonelli E, Bianchi R, Cavaletti G, Caruso D, Crippa D, Garcia-Segura LM, Lauria G, Magnaghi V, Roglio I, Melcangi RC (2007) Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis. Neuroscience 144(4):1293–1304Google Scholar
  73. Liu RT, Chung MS, Wang PW, Chen CD, Lee JJ, Lee WC, Chancellor MB, Yang KD, Chuang YC (2013) The prevalence and predictors of androgen deficiency in Taiwanese men with type 2 diabetes. Urology 82(1):124–129Google Scholar
  74. Liu Y, Li M, Zhang Z, Ye Y, Zhou J (2018) Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res Rev 42:28–39Google Scholar
  75. Malcangio M, Tomlinson DR (1998) A pharmacologic analysis of mechanical hyperalgesia in streptozotocin/diabetic rats. Pain 76(1–2):151–157Google Scholar
  76. Marcus SM, Kerber KB, Rush AJ, Wisniewski SR, Nierenberg A, Balasubramani GK, Ritz L, Kornstein S, Young EA, Trivedi MH (2008) Sex differences in depression symptoms in treatment-seeking adults: confirmatory analyses from the Sequenced Treatment Alternatives to Relieve Depression study. Compr Psychiatry 49(3):238–246Google Scholar
  77. Marx CE, Trost WT, Shampine LJ, Stevens RD, Hulette CM, Steffens DC, Ervin JF, Butterfield MI, Blazer DG, Massing MW, Lieberman JA (2006) The neurosteroid allopregnanolone is reduced in prefrontal cortex in Alzheimer’s disease. Biol Psychiatry 60(12):1287–1294Google Scholar
  78. Mehlig K, Skoog I, Waern M, Miao Jonasson J, Lapidus L, Bjorkelund C, Ostling S, Lissner L (2014) Physical activity, weight status, diabetes and dementia: a 34-year follow-up of the population study of women in Gothenburg. Neuroepidemiology 42(4):252–259Google Scholar
  79. Melcangi RC, Garcia-Segura LM, Mensah-Nyagan AG (2008) Neuroactive steroids: state of the art and new perspectives. Cell Mol Life Sci 65(5):777–797Google Scholar
  80. Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, Viviani B, Garcia-Segura LM, Caruso D (2014) Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 113:56–69Google Scholar
  81. Melcangi RC, Giatti S, Garcia-Segura LM (2016) Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci Biobehav Rev 67:25–40Google Scholar
  82. Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10(1):23–36Google Scholar
  83. Mitro N, Cermenati G, Giatti S, Abbiati F, Pesaresi M, Calabrese D, Garcia-Segura LM, Caruso D, Melcangi RC (2012) LXR and TSPO as new therapeutic targets to increase the levels of neuroactive steroids in the central nervous system of diabetic animals. Neurochem Int 60(6):616–621Google Scholar
  84. Mitro N, Cermenati G, Brioschi E, Abbiati F, Audano M, Giatti S, Crestani M, De Fabiani E, Azcoitia I, Garcia-Segura LM, Caruso D, Melcangi RC (2014) Neuroactive steroid treatment modulates myelin lipid profile in diabetic peripheral neuropathy. J Steroid Biochem Mol Biol 143:115–121Google Scholar
  85. Moran C, Phan TG, Chen J, Blizzard L, Beare R, Venn A, Munch G, Wood AG, Forbes J, Greenaway TM, Pearson S, Srikanth V (2013) Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care 36(12):4036–4042Google Scholar
  86. Niemeier JP, Marwitz JH, Lesher K, Walker WC, Bushnik T (2007) Gender differences in executive functions following traumatic brain injury. Neuropsychol Rehabil 17(3):293–313Google Scholar
  87. O’Brien PD, Hur J, Robell NJ, Hayes JM, Sakowski SA, Feldman EL (2016) Gender-specific differences in diabetic neuropathy in BTBR ob/ob mice. J Diabetes Complicat 30(1):30–37Google Scholar
  88. Pesaresi M, Giatti S, Calabrese D, Maschi O, Caruso D, Melcangi RC (2010a) Dihydroprogesterone increases the gene expression of myelin basic protein in spinal cord of diabetic rats. J Mol Neurosci 42(2):135–139Google Scholar
  89. Pesaresi M, Maschi O, Giatti S, Garcia-Segura LM, Caruso D, Melcangi RC (2010b) Sex differences in neuroactive steroid levels in the nervous system of diabetic and non-diabetic rats. Horm Behav 57(1):46–55Google Scholar
  90. Pesaresi M, Giatti S, Cavaletti G, Abbiati F, Calabrese D, Bianchi R, Caruso D, Garcia-Segura LM, Melcangi RC (2011a) Sex differences in the manifestation of peripheral diabetic neuropathy in gonadectomized rats: a correlation with the levels of neuroactive steroids in the sciatic nerve. Exp Neurol 228(2):215–221Google Scholar
  91. Pesaresi M, Giatti S, Cavaletti G, Abbiati F, Calabrese D, Lombardi R, Bianchi R, Lauria G, Caruso D, Garcia-Segura LM, Melcangi RC (2011b) Sex-dimorphic effects of dehydroepiandrosterone in diabetic neuropathy. Neuroscience 199:401–409Google Scholar
  92. Pesaresi M, Giatti S, Spezzano R, Romano S, Diviccaro S, Borsello T, Mitro N, Caruso D, Garcia-Segura LM, Melcangi RC (2018) Axonal transport in a peripheral diabetic neuropathy model: sex-dimorphic features. Biol Sex Differ 9(1):6Google Scholar
  93. Policardo L, Seghieri G, Francesconi P, Anichini R, Franconi F, Seghieri C, Del Prato S (2015) Gender difference in diabetes-associated risk of first-ever and recurrent ischemic stroke. J Diabetes Complicat 29(5):713–717Google Scholar
  94. Rani V, Deshmukh R, Jaswal P, Kumar P, Bariwal J (2016) Alzheimer’s disease: is this a brain specific diabetic condition? Physiol Behav 164(Pt A):259–267Google Scholar
  95. Riederer P, Korczyn AD, Ali SS, Bajenaru O, Choi MS, Chopp M, Dermanovic-Dobrota V, Grunblatt E, Jellinger KA, Kamal MA, Kamal W, Leszek J, Sheldrick-Michel TM, Mushtaq G, Meglic B, Natovich R, Pirtosek Z, Rakusa M, Salkovic-Petrisic M, Schmidt R, Schmitt A, Sridhar GR, Vecsei L, Wojszel ZB, Yaman H, Zhang ZG, Cukierman-Yaffe T (2017) The diabetic brain and cognition. J Neural Transm (Vienna) 124(11):1431–1454Google Scholar
  96. Roglio I, Bianchi R, Giatti S, Cavaletti G, Caruso D, Scurati S, Crippa D, Garcia-Segura LM, Camozzi F, Lauria G, Melcangi RC (2007) Testosterone derivatives are neuroprotective agents in experimental diabetic neuropathy. Cell Mol Life Sci 64(9):1158–1168Google Scholar
  97. Romano S, Mitro N, Diviccaro S, Spezzano R, Audano M, Garcia-Segura LM, Caruso D, Melcangi RC (2017) Short-term effects of diabetes on neurosteroidogenesis in the rat hippocampus. J Steroid Biochem Mol Biol 167:135–143Google Scholar
  98. Romano S, Mitro N, Giatti S, Diviccaro S, Pesaresi M, Spezzano R, Audano M, Garcia-Segura LM, Caruso D, Melcangi RC (2018) Diabetes induces mitochondrial dysfunction and alters cholesterol homeostasis and neurosteroidogenesis in the rat cerebral cortex. J Steroid Biochem Mol Biol 178:108–116Google Scholar
  99. Roy Chowdhury SK, Smith DR, Saleh A, Schapansky J, Marquez A, Gomes S, Akude E, Morrow D, Calcutt NA, Fernyhough P (2012) Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 135(Pt 6):1751–1766Google Scholar
  100. Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z (2016) The effect of diabetes mellitus on apoptosis in hippocampus: cellular and molecular aspects. Int J Prev Med 7:57Google Scholar
  101. Sakata A, Mogi M, Iwanami J, Tsukuda K, Min LJ, Jing F, Iwai M, Ito M, Horiuchi M (2010) Female exhibited severe cognitive impairment in type 2 diabetes mellitus mice. Life Sci 86(17–18):638–645Google Scholar
  102. Sakata A, Mogi M, Iwanami J, Tsukuda K, Min LJ, Jing F, Ohshima K, Ito M, Horiuchi M (2011) Female type 2 diabetes mellitus mice exhibit severe ischemic brain damage. J Am Soc Hypertens 5(1):7–11Google Scholar
  103. Schoenle EJ, Schoenle D, Molinari L, Largo RH (2002) Impaired intellectual development in children with type I diabetes: association with HbA(1c), age at diagnosis and sex. Diabetologia 45(1):108–114Google Scholar
  104. Simonds VM, Whiffen VE (2003) Are gender differences in depression explained by gender differences in co-morbid anxiety? J Affect Disord 77(3):197–202Google Scholar
  105. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis 7(1):63–80Google Scholar
  106. Sugimoto K, Murakawa Y, Sima AA (2000) Diabetic neuropathy–a continuing enigma. Diabetes Metab Res Rev 16(6):408–433Google Scholar
  107. Takeda S, Sato N, Rakugi H, Morishita R (2011) Molecular mechanisms linking diabetes mellitus and Alzheimer disease: beta-amyloid peptide, insulin signaling, and neuronal function. Mol Biosyst 7(6):1822–1827Google Scholar
  108. Tanaka Y, Niwa S, Dong M, Farkhondeh A, Wang L, Zhou R, Hirokawa N (2016) The molecular motor KIF1A transports the trka neurotrophin receptor and is essential for sensory neuron survival and function. Neuron 90(6):1215–1229Google Scholar
  109. Tomiyama M, Furusawa K, Kamijo M, Kimura T, Matsunaga M, Baba M (2005) Upregulation of mRNAs coding for AMPA and NMDA receptor subunits and metabotropic glutamate receptors in the dorsal horn of the spinal cord in a rat model of diabetes mellitus. Brain Res Mol Brain Res 136(1–2):275–281Google Scholar
  110. Toth C, Schmidt AM, Tuor UI, Francis G, Foniok T, Brussee V, Kaur J, Yan SF, Martinez JA, Barber PA, Buchan A, Zochodne DW (2006) Diabetes, leukoencephalopathy and rage. Neurobiol Dis 23(2):445–461Google Scholar
  111. Tsutsui K (2012) Neurosteroid biosynthesis and action during cerebellar development. Cerebellum 11(2):414–415Google Scholar
  112. van Dam EW, Dekker JM, Lentjes EG, Romijn FP, Smulders YM, Post WJ, Romijn JA, Krans HM (2003) Steroids in adult men with type 1 diabetes: a tendency to hypogonadism. Diabetes Care 26(6):1812–1818Google Scholar
  113. Vannucci SJ, Willing LB, Goto S, Alkayed NJ, Brucklacher RM, Wood TL, Towfighi J, Hurn PD, Simpson IA (2001) Experimental stroke in the female diabetic, db/db, mouse. J Cereb Blood Flow Metab 21(1):52–60Google Scholar
  114. Veiga S, Leonelli E, Beelke M, Garcia-Segura LM, Melcangi RC (2006) Neuroactive steroids prevent peripheral myelin alterations induced by diabetes. Neurosci Lett 402(1–2):150–153Google Scholar
  115. Vincent AM, Edwards JL, McLean LL, Hong Y, Cerri F, Lopez I, Quattrini A, Feldman EL (2010) Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 120(4):477–489Google Scholar
  116. Vinik AI, Park TS, Stansberry KB, Pittenger GL (2000) Diabetic neuropathies. Diabetologia 43(8):957–973Google Scholar
  117. Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2(12):973–985Google Scholar
  118. Yagihashi S (1997) Pathogenetic mechanisms of diabetic neuropathy: lessons from animal models. J Peripher Nerv Syst 2(2):113–132Google Scholar
  119. Yorek MA, Coppey LJ, Gellett JS, Davidson EP, Bing X, Lund DD, Dillon JS (2002) Effect of treatment of diabetic rats with dehydroepiandrosterone on vascular and neural function. Am J Physiol Endocrinol Metab 283(5):E1067–E1075Google Scholar
  120. Zhou Y, Luo Y, Dai J (2013) Axonal and dendritic changes are associated with diabetic encephalopathy in rats: an important risk factor for Alzheimer’s disease. J Alzheimers Dis 34(4):937–947Google Scholar
  121. Zochodne DW (2007) Diabetes mellitus and the peripheral nervous system: manifestations and mechanisms. Muscle Nerve 36(2):144–166Google Scholar
  122. Zychowska M, Rojewska E, Przewlocka B, Mika J (2013) Mechanisms and pharmacology of diabetic neuropathy—Experimental and clinical studies. Pharmacol Rep 65(6):1601–1610Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations