Advertisement

Cellular and Molecular Neurobiology

, Volume 38, Issue 7, pp 1383–1397 | Cite as

The Synergistic Combination of Everolimus and Paroxetine Exerts Post-ischemic Neuroprotection In Vitro

  • V. S. Suvanish Kumar
  • Etheresia Pretorius
  • G. K. Rajanikant
Original Research

Abstract

Ischemic stroke is a debilitating multi-factorial cerebrovascular disorder, representing an area of tremendous unmet medical need. Combination treatment has been proposed as a promising therapeutic approach towards combating ischemic stroke. The present study employs in vitro oxygen glucose deprivation (OGD) model to evaluate the post-ischemic neuroprotective efficacy of Everolimus and Paroxetine, alone and in combination. Post-OGD treatment with Everolimus and Paroxetine, alone or in combination, significantly improved the cell survival (~ 80%) when compared to the cells subjected to ischemic injury alone. The individual neuroprotective doses of Everolimus and Paroxetine were found to be at 6.25 and 25 nM, respectively. Whereas, the synergistic neuroprotective dose for Everolimus:Paroxetine was 2:10 nM, calculated using the Chou-Talalay combination index and other four mathematical models. The synergistic combination dose downregulated neuroinflammatory genes (Tnf-α, Il1b, Nf-κB, and iNos) and upregulated the neuroprotective genes (Bcl-2, Bcl-xl, Hif-1, and Epo). The mitochondrial functioning and ROS neutralizing ability increased with combination treatment. Further, the active role of nitric oxide synthase and calmodulin were revealed while exploring the bio-activity of Everolimus and Paroxetine through network pharmacology. The present study for the first time demonstrates the synergistic post-ischemic neuroprotective efficacy of combination treatment with Everolimus and Paroxetine in vitro. Taken together, these findings clearly suggest that Everolimus in combination with Paroxetine may represent a promising therapeutic strategy for the treatment of ischemic stroke, further supporting the combination treatment strategy for this debilitating disorder.

Keywords

Combination therapy Neuroprotection Ischemic stroke Paroxetine Everolimus Oxygen glucose deprivation 

Notes

Acknowledgements

This work was supported by the Department of Biotechnology, Government of India (Grant Number: BT/PR15112/GBD/27/323/2011 dated 16/03/2011). The network pharmacology study was carried out at the Bioinformatics Infrastructure Facility for Biology Teaching through Bioinformatics (BIF-BTBI), funded by the Department of Biotechnology, Government of India, (Grant Number: BT/BI/25/001/2006 dated 25/03/2011).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH (2017) HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res 45:408–414.  https://doi.org/10.1093/nar/gkw985 CrossRefGoogle Scholar
  2. Baracca A, Sgarbi G, Solaini G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim et Biophys Acta 1606:137–146CrossRefGoogle Scholar
  3. Broughton BRS, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:331–339.  https://doi.org/10.1161/STROKEAHA.108.531632 CrossRefGoogle Scholar
  4. Bruey JM, Bruey-Sedano N, Luciano F et al (2007) Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129:45–56.  https://doi.org/10.1016/j.cell.2007.01.045 CrossRefPubMedGoogle Scholar
  5. Cárcamo J, Weis FM, Ventura F et al (1994) Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol Cell Biol 14:3810–3821CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen J (2014) Heme oxygenase in neuroprotection: from mechanisms to therapeutic implications. Rev Neurosci 25:269–280.  https://doi.org/10.1515/revneuro-2013-0046 CrossRefPubMedGoogle Scholar
  7. Chen H, Shi H (2008) A reducing environment stabilizes HIF-2alpha in SH-SY5Y cells under hypoxic conditions. FEBS Lett 582:3899–38902.  https://doi.org/10.1016/j.febslet.2008.10.031 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen H, Qu Y, Tang B et al (2012) Role of mammalian target of rapamycin in hypoxic or ischemic brain injury: potential neuroprotection and limitations. Rev Neurosci 23:279–287.  https://doi.org/10.1515/revneuro-2012-0001 CrossRefPubMedGoogle Scholar
  9. Chong ZZ, Yao Q, Li H-H (2013) The rationale of targeting mammalian target of rapamycin for ischemic stroke. Cell Signal 25:1598–1607.  https://doi.org/10.1016/j.cellsig.2013.03.017 CrossRefPubMedGoogle Scholar
  10. Chou T-C (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681.  https://doi.org/10.1124/pr.58.3.10 CrossRefPubMedGoogle Scholar
  11. Chou T-C (2010) Drug combination studies and their synergy quantification using the chou-talalay method. Can Res 70:440–446.  https://doi.org/10.1158/0008-5472.CAN-09-1947 CrossRefGoogle Scholar
  12. Chung YC, Kim SR, Jin BK (2010) Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s Disease. J Immunol 185:1230–1237.  https://doi.org/10.4049/jimmunol.1000208 CrossRefPubMedGoogle Scholar
  13. Cline MS, Smoot M, Cerami E et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nature Protoc 2:2366–2382.  https://doi.org/10.1038/nprot.2007.324 CrossRefGoogle Scholar
  14. del Zoppo G, Ginis I, Hallenbeck JM et al (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10:95–112CrossRefPubMedGoogle Scholar
  15. Durairaj H, Steury MD, Parameswaran N (2015) Paroxetine differentially modulates LPS-induced TNFα and IL-6 production in mouse macrophages. Int Immunopharmacol 25:485–492.  https://doi.org/10.1016/j.intimp.2015.02.029 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Geary N (2013) Understanding synergy. AJP 304:237–253.  https://doi.org/10.1152/ajpendo.00308.2012 CrossRefGoogle Scholar
  17. Granata S, Dalla Gassa A, Carraro A et al (2016) Sirolimus and everolimus pathway: reviewing candidate genes influencing their intracellular effects. Int J Mol Sciences 17:1–26.  https://doi.org/10.3390/ijms17050735 CrossRefGoogle Scholar
  18. Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 6:524–551.  https://doi.org/10.1016/j.redox.2015.08.020 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Harry GJ, Tilson HA (2010) Neurotoxicology. Informa HealthcareGoogle Scholar
  20. Hasskarl J (2014) Everolimus. In: Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer. pp 373–392Google Scholar
  21. Heydorn WE (1999) Paroxetine: a review of its pharmacology, pharmacokinetics and utility in the treatment of a variety of psychiatric disorders. Expert Opin Investig Drugs 8:417–441.  https://doi.org/10.1517/13543784.8.4.417 CrossRefPubMedGoogle Scholar
  22. Houghton PJ (2010) Everolimus. In: Clinical Cancer Research. http://www.ncbi.nlm.nih.gov/pubmed/20179227. Accessed 29 Jun 2017
  23. Hua Y, Wu J, Keep RF et al (2006) Tumor necrosis factor-α increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery 58:542–550.  https://doi.org/10.1227/01.NEU.0000197333.55473.AD CrossRefPubMedGoogle Scholar
  24. Ianevski A, He L, Aittokallio T, Tang J (2017) SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinformatics 33:2413–2415.  https://doi.org/10.1093/bioinformatics/btx162 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jazwa A, Cuadrado A (2010) Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr Drug Targets 11:1517–1531CrossRefPubMedGoogle Scholar
  26. Jean WC, Spellman SR, Nussbaum ES, Low WC (1998) Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery 43:1382–1397PubMedGoogle Scholar
  27. Kamura T, Maenaka K, Kotoshiba S et al (2004) VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 18:3055–3065.  https://doi.org/10.1101/gad.1252404 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kikuchi K, Tanaka E, Murai Y, Tancharoen S (2014) Clinical Trials in Acute Ischemic Stroke. CNS Drugs 28:929–938.  https://doi.org/10.1007/s40263-014-0199-6 CrossRefPubMedGoogle Scholar
  29. Kumar VSS, Gopalakrishnan A, Naziroğlu M, Rajanikant GK (2014) Calcium ion—the key player in cerebral ischemia. Curr Med Chem 21:2065–2075CrossRefPubMedGoogle Scholar
  30. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293.  https://doi.org/10.1016/j.cell.2012.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  31. LeBlanc RH, Chen R, Selim MH et al (2016) Heme oxygenase-1-mediated neuroprotection in subarachnoid hemorrhage via intracerebroventricular deferoxamine. J Neuroinflam 13:244–253.  https://doi.org/10.1186/s12974-016-0709-1 CrossRefGoogle Scholar
  32. Lebrun JJ, Vale WW (1997) Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and type II activin receptors and human erythroid differentiation. Mol Cell Biol 17:1682–1691CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lee D-H, Lee YJ, Kwon KH (2010) Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. Journal of Clin Biochem Nutr 47:121–129.  https://doi.org/10.3164/jcbn.10-29 CrossRefGoogle Scholar
  34. Lee B-S, Jun I-G, Kim S-H, Park JY (2012) Interaction of morphine and selective serotonin receptor inhibitors in rats experiencing inflammatory pain. J Korean Med Sci 27:430–436.  https://doi.org/10.3346/jkms.2012.27.4.430 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lee SH, Sung MJ, Lee HM et al (2014) Blockade of HERG human K+ channels by the antidepressant drug paroxetine. Biol Pharm Bull 37:1495–1504CrossRefPubMedGoogle Scholar
  36. Lee CH, Park JH, Ahn JH, Won M-H (2016) Effects of melatonin on cognitive impairment and hippocampal neuronal damage in a rat model of chronic cerebral hypoperfusion. Exp Ther Med 11:2240–2246.  https://doi.org/10.3892/etm.2016.3216 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li D, Wang C, Yao Y et al (2016) mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type. FASEB J 30:3388–3399.  https://doi.org/10.1096/fj.201600495R CrossRefPubMedGoogle Scholar
  38. Marx SO, Reiken S, Hisamatsu Y et al (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376CrossRefPubMedGoogle Scholar
  39. Noguchi CT, Asavaritikrai P, Teng R, Jia Y (2007) Role of erythropoietin in the brain. Crit Rev Oncol/Hematol 64:159–171.  https://doi.org/10.1016/j.critrevonc.2007.03.001 CrossRefGoogle Scholar
  40. North WG, Fay MJ, Longo KA, Du J (1998) Expression of all known vasopressin receptor subtypes by small cell tumors implies a multifaceted role for this neuropeptide. Can Res 58:1866–1871Google Scholar
  41. O’Collins VE, Macleod MR, Donnan GA, Howells DW (2012) Evaluation of combination therapy in animal models of cerebral ischemia. J Cereb Blood Flow Metabol 32:585–597.  https://doi.org/10.1038/jcbfm.2011.203 CrossRefGoogle Scholar
  42. O’Reilly T, McSheehy PM (2010) Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol 3:65–79CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ohnuma K, Uchiyama M, Yamochi T et al (2007) Caveolin-1 Triggers T-cell Activation via CD26 in Association with CARMA1. J Biol Chem 282:10117–10131.  https://doi.org/10.1074/jbc.M609157200 CrossRefPubMedGoogle Scholar
  44. Park HJ, Lee PH, Ahn YW et al (2007) Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. Eur J Neurosci 26:79–89.  https://doi.org/10.1111/j.1460-9568.2007.05636.x CrossRefPubMedGoogle Scholar
  45. Piret J-P, Lecocq C, Toffoli S et al (2004) Hypoxia and CoCl2 protect HepG2 cells against serum deprivation- and t-BHP-induced apoptosis: a possible anti-apoptotic role for HIF-1. Exp Cell Res 295:340–349.  https://doi.org/10.1016/j.yexcr.2004.01.024 CrossRefPubMedGoogle Scholar
  46. Raimondo L, D’Amato V, Servetto A et al (2016) Everolimus induces Met inactivation by disrupting the FKBP12/Met complex. Oncotarget 7:40073–40084.  https://doi.org/10.18632/oncotarget.9484 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Saelens X, Festjens N, Walle L, Vande et al (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–2874.  https://doi.org/10.1038/sj.onc.1207523 CrossRefPubMedGoogle Scholar
  48. Sasabe E, Tatemoto Y, Li D et al (2005) Mechanism of HIF-1alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci 96:394–402.  https://doi.org/10.1111/j.1349-7006.2005.00065.x CrossRefPubMedGoogle Scholar
  49. Schaefer MH, Fontaine J-F, Vinayagam A et al (2012) HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS ONE 7:1–8 (e31826.  https://doi.org/10.1371/journal.pone.0031826 CrossRefGoogle Scholar
  50. Schwarzmann N, Kunerth S, Weber K et al (2002) Knock-down of the Type 3 Ryanodine Receptor Impairs Sustained Ca 2+ Signaling via the T Cell Receptor/CD3 Complex. J Biol Chem 277:50636–50642.  https://doi.org/10.1074/jbc.M209061200 CrossRefPubMedGoogle Scholar
  51. Sharma GD, Kakazu A, Bazan HEP (2007) Protein kinase C alpha and epsilon differentially modulate hepatocyte growth factor-induced epithelial proliferation and migration. Exp Eye Res 85:289–297.  https://doi.org/10.1016/j.exer.2007.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Siepmann T, Penzlin AI, Kepplinger J et al (2015) Selective serotonin reuptake inhibitors to improve outcome in acute ischemic stroke: possible mechanisms and clinical evidence. Brain Behav 5:e00373.  https://doi.org/10.1002/brb3.373 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Steiner JP, Bachani M, Wolfson-Stofko B et al (2015) Interaction of paroxetine with mitochondrial proteins mediates neuroprotection. Neurotherapeutics 12:200–216.  https://doi.org/10.1007/s13311-014-0315-9 CrossRefPubMedGoogle Scholar
  54. Stroke Therapy Academic Industry Roundtable II (STAIR-II) (2001) Recommendations for clinical trial evaluation of acute stroke therapies. Stroke 32:1598–1606CrossRefGoogle Scholar
  55. Su G, Morris JH, Demchak B, Bader GD (2014) Biological network exploration with Cytoscape 3. Curr Protoc Bioinform 47:1–8.  https://doi.org/10.1002/0471250953.bi0813s47 CrossRefGoogle Scholar
  56. Subirós N, García D, Coro-Antich RM et al (2012) Erythropoietin: still on the neuroprotection road. Ther Adv Neurol Disord 5:161–173.  https://doi.org/10.1177/1756285611434926 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sun Y, Calvert JW, Zhang JH (2005) Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke 36:1672–1678.  https://doi.org/10.1161/01.STR.0000173406.04891.8c CrossRefPubMedGoogle Scholar
  58. Toledo-Pereyra LH, Lopez-Neblina F, Toledo AH (2004) Reactive oxygen species and molecular biology of ischemia/reperfusion. Ann Transpl 9:81–83Google Scholar
  59. Tsang WY, Spektor A, Luciano DJ et al (2006) CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell 17:3423–3434.  https://doi.org/10.1091/mbc.E06-04-0371 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Villa P, Bigini P, Mennini T et al (2003) Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 198:971–975.  https://doi.org/10.1084/jem.20021067 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wenker SD, Chamorro ME, Vota DM et al (2010) Differential antiapoptotic effect of erythropoietin on undifferentiated and retinoic acid-differentiated SH-SY5Y cells. J Cell Biochem.  https://doi.org/10.1002/jcb.22521 PubMedCrossRefGoogle Scholar
  62. Yin L, Ohtaki H, Nakamachi T et al (2003) Expression of tumor necrosis factor alpha (TNFalpha) following transient cerebral ischemia. Acta Neurochir Suppl 86:93–96PubMedGoogle Scholar
  63. Zamora R, Vodovotz Y, Billiar TR (2000) Inducible nitric oxide synthase and inflammatory diseases. Mol Med 6:347–373CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhang H, Kim JK, Edwards CA et al (2005) Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7:909–915.  https://doi.org/10.1038/ncb1291 CrossRefPubMedGoogle Scholar
  65. Zhang B, Yin C-P, Zhao Q, Yue S-W (2014) Upregulation of HIF-1α by hypoxia protect neuroblastoma cells from apoptosis by promoting survivin expression. Asian Pac J Cancer Prev 15:8251–8257CrossRefPubMedGoogle Scholar
  66. Zhao W, Sachsenmeier K, Zhang L et al (2014) A new bliss independence model to analyze drug combination data. J Biomol Screen 19:817–821.  https://doi.org/10.1177/1087057114521867 CrossRefPubMedGoogle Scholar
  67. Zhu L, Bi W, Lu D et al (2014) Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen-activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells. Exp Ther Med 7:1065–1070.  https://doi.org/10.3892/etm.2014.1564 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of BiotechnologyNational Institute of Technology CalicutCalicutIndia
  2. 2.Department of Physiological SciencesStellenbosch UniversityMatielandSouth Africa

Personalised recommendations