Skip to main content

Permanent Photodynamic Cholecystokinin 1 Receptor Activation: Dimer-to-Monomer Conversion

Abstract

The G protein-coupled cholecystokinin 1 receptor (CCK1R) is activated permanently by type II photodynamic action (i.e., by singlet oxygen) in the freshly isolated rat pancreatic acini, in contrast to reversible activation by CCK. But how CCK1R is photodynamically activated is not known. Therefore, in the present work, we subjected membrane proteins extracted from isolated rat pancreatic acini to photodynamic action with photosensitiser sulphonated aluminium phthalocyanine (SALPC), and used reducing gel electrophoresis and Western blot to detect possible changes in CCK1R oligomerization status. Photodynamic action (SALPC 1 µM, light 36.7 mW cm− 2 × 10 min) was found to convert dimeric CCK1R nearly quantitatively to monomers. Such conversion was dependent on both irradiance (8.51–36.7 mW cm− 2) and irradiation time (1–20 min). Minimum effective irradiance was found to be 11.1 mW cm− 2 (× 10 min, with SALPC 1 µM), and brief photodynamic action (SALPC 1 µM, 36.7 mW cm− 2 × 1 min) was effective. Whilst CCK stimulation of purified membrane proteins alone had no effect on CCK1R dimer/monomer balance, sub-threshold photodynamic action (SALPC 100 nM, 36.7 mW cm− 2 × 10 min) plus CCK revealed a bell-shaped CCK dose response curve for CCK1R monomerization, which was remarkably similar to the dose response curve for CCK-stimulated amylase secretion in isolated rat pancreatic acini. These two lines of evidence together suggest that during photodynamic CCK1R activation, CCK1R is permanently monomerized, thus providing a unique approach for permanent G protein-coupled receptor (GPCR) activation which has not been achieved before.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • An YP, Xiao R, Cui H, Cui ZJ ZJ (2003) Selective activation by photodynamic action of cholecystokinin receptor in the freshly isolated rat pancreatic acini. Br J Pharmacol 139:872–880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Archer-Lahlou E, Escrieut C, Clerc P, Martinez J, Moroder L, Logsdon C, Kopin C, Seva C, Dufresne M, Pradayrol L, Maigret B, Fourmy D (2005) Molecular mechanism underlying partial and full agonism mediated by the human cholecystokinin-1 receptor. J Biol Chem 280:10664–10674

    Article  PubMed  CAS  Google Scholar 

  • Bai M (2004) Dimerization of G-protein-coupled receptors: roles in signal transduction. Cell Signal 16:175–186

    Article  PubMed  CAS  Google Scholar 

  • Ballaz S (2017) The unappreciated roles of the cholecystokinin receptor CCK1 in brain functioning. Rev Neurosci 28:573–585

    Article  PubMed  CAS  Google Scholar 

  • Broberger C, Holmberg K, Shi TJ, Dockray G, Hokfelt T (2001) Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Res 903:128–140

    Article  PubMed  CAS  Google Scholar 

  • Cheng ZJ, Miller LJ (2001) Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J Biol Chem 276:48040–48047

    Article  PubMed  CAS  Google Scholar 

  • Cheng ZJ, Harikumar KG, Holicky EL, Miller LJ (2003) Heterodimerization of type A and B cholecystokinin receptors enhance signaling and promote cell growth. J Biol Chem 278:52972–52979

    Article  PubMed  CAS  Google Scholar 

  • Cui ZJ, Kanno T (1997) Photodynamic triggering of calcium oscillation in the isolated rat pancreatic acini. J Physiol 504:47–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui ZJ, Matthews EK (1998) Photodynamic modulation of cellular function. Acta Pharmacol Sin/Zhongguo Yao Li Xue Bao 19:297–303

    CAS  Google Scholar 

  • Cui ZJ, Habara Y, Wang DY, Kanno T (1997) A novel aspect of photodynamic action: induction of recurrent spikes in cytosolic calcium concentration. Photochem Photobiol 65:382–386

    Article  PubMed  CAS  Google Scholar 

  • Desai AJ, Harikumar KG, Miller LJ (2014) A type 1 cholecystokinin receptor mutant that mimics the dysfunction observed for wild type receptor in a high cholesterol environment. J Biol Chem 289:18314–18326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong M, Vattelana AM, Lam PC, Orry AJ, Abagyan R, Christopoulos A, Sexton PM, Haines DR, Miller LJ (2015) Development of a highly selective allosteric antagonist radioligand for the type 1 cholecystokinin receptor and elucidation of its molecular basis of binding. Mol Pharmacol 87:130–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Escrieut C, Gigoux V, Archer E, Verrier S, Maigret B, Behrendt R, Moroder L, Bignon E, Silvente-Poirot S, Pradayrol L, Fourmy D (2002) The biologically crucial C terminus of cholecystokinin and the nonpeptide agonist SR-146, 131 share a common binding site in the human CCK1 receptor. Evidence for a crucial role of Met-121 in the activation process. J Biol Chem 277:7546–7555

    Article  PubMed  CAS  Google Scholar 

  • Gigoux V, Escrieut C, Silvente-Poirot S, Maigret B, Gouilleux L, Fehrentz JA, Gully D, Moroder L, Vaysse N, Fourmy D (1998) Met-195 of the cholecystokinin-A receptor interacts with the sulfated tyrosine of cholecystokinin and is crucial for receptor transition to high affinity state. J Biol Chem 273:14380–14386

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Liu Z, Dong X, Ding YH, Dong MQ, Tang C (2017) Protocol for analyzing protein ensemble structures from chemical cross-links using DynaXL. Biophys Rep 3(4–6):100–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2008) Rich tapestry of G protein-coupled receptor signaling and regulatory mechanisms. Mol Pharmacol 74:312–316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harikumar KG, Dong M, Cheng Z, Pinon DI, Lybrand TP, Miller LJ (2006) Transmembrane segment peptides can disrupt cholecystokinin receptor oligomerization without affecting receptor function. Biochemistry 45:14706–14716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henderson BW, Daroqui C, Tracy E, Vaughan LA, Loewen GM, Cooper MT, Baumann H (2007) Cross-linking of signal transducer and activator of transcription 3-a molecular marker for the photodynamic reaction in cells and tumors. Clin Cancer Res 13:3156–3163

    Article  PubMed  CAS  Google Scholar 

  • Hsieh YJ, Chien KY, Yang IF, Lee IN, Wu CC, Huang TY, Yu JS (2017) Oxidation of protein-bound methionine in Photofrin-photodynamic therapy-treated human tumor cells explored by methionine-containing peptide enrichment and quantitative proteomics approach. Sci Rep 7:1370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu J, Hu K, Liu T, Stern MK, Mistry R, Challiss RA, Costanzi S, Wess J (2013) Novel structural and functional insights into M3 muscarinic receptor dimer/oligomer formation. J Biol Chem 288:34777–34790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang HN, Li Y, Cui ZJ (2017) Photodynamic physiology—photonanomanipulations in cellular physiology with protein photosensitisers. Front Physiol 8:191

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang HN, Li Y, Jiang WY, Cui ZJ (2018) Cholecystokinin 1 receptor—a unique G protein-coupled receptor activated by singlet oxygen (GPCR-ABSO). Front Physiol 9:497

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaczynska K, Szereda-Przestaszewska M (2015) Contribution of CCK1 receptors to cardiovascular and respiratory effects of cholecystokinin in anesthetized rats. Neuropeptides 54:29–34

    Article  PubMed  CAS  Google Scholar 

  • Kazmi HR, Chandra A, Nigam J, Baghel K, Srivastava M, Maurya SS, Parmar D (2016) Polymorphism and expression profile of cholecystokinin type A receptor in relation to gallstone disease susceptibility. Biochem Genet 54:665–675

    Article  PubMed  CAS  Google Scholar 

  • Kuszak AJ, Pitchiaya S, Anand JP, Mosberg HI, Walter NG, Sunahara RK (2009) Purification and functional reconstitution of monomeric µ-opioid receptors: allosteric modulation of agonist binding by Gi2. J Biol Chem 284:26732–26741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li JH, Han SJ, Hamdan FF, Kim SK, Jacobson KA, Bloodworth LM, Zhang X, Wess J (2007) Distinct structural changes in a G protein-coupled receptor caused by different classes of agonist ligands. J Biol Chem 282:26284–26293

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wu X, Zhou S, Owyang C (2011) Low-affinity CCK-A receptors are coexpressed with leptin receptors in rat nodose ganglia: implications for leptin as a regulator of short-term satiety. Am J Physiol Gastrointest Liver Physiol 300:G217-G227

    Google Scholar 

  • Liang HY, Song ZM, Cui ZJ (2013) Lasting inhibition of receptor-mediated calcium oscillations in pancreatic acini by neutrophil respiratory burst-A novel mechanism for secretory blockade in acute pancreatitis? Biochem Biophys Res Commun 437:361–367

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Oseroff AR, Baumann H (2004) Photodynamic therapy causes cross-linking of signal transducer and activator of transcription proteins and attenuation of interleukin-6 cytokine responsiveness in epithelial cells. Cancer Res 64:6579–6587

    Article  PubMed  CAS  Google Scholar 

  • Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathiasen S, Christensen SM, Fung JJ, Rasmussen SG, Fay JF, Jorgensen SK, Veshaguri S, Farrens DL, Kiskowski M, Kobilka B, Stamou D (2014) Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes. Nat Methods 11:931–934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matthews EK, Cui ZJ (1989) Photodynamic action of rose bengal on isolated rat pancreatic acini: stimulation of amylase release. FEBS Lett 256:29–32

    Article  PubMed  CAS  Google Scholar 

  • Matthews EK, Cui ZJ (1990a) Photodynamic action of sulphonated aluminium phthalocyanine (SALPC) on isolated rat pancreatic acini. Biochem Pharmacol 39:1445–1457

    Article  PubMed  CAS  Google Scholar 

  • Matthews EK, Cui ZJ (1990b) Photodynamic action of sulphonated aluminium phthalocyanine (SALPC) on AR4-2J cells, a carcinoma cell line of rat exocrine pancreas. Br J Cancer 61:695–701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matthews JM, Sunde M (2012) Dimers, oligomers, everywhere. Adv Exp Med Biol 747:1–18

    Article  PubMed  CAS  Google Scholar 

  • Milligan G (2004) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7

    Article  PubMed  CAS  Google Scholar 

  • Mishra AK, Gragg M, Stoneman MR, Biener G, Oliver JA, Miszta P, Filipek S, Raicu V, Park PS (2016) Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochem J 473:3819–3836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Møller TC, Moreno-Delgado D, Pin JP, Kniazeff J (2017) Class C G protein-coupled receptors: reviving old couples with new partners. Biophys Rep 3(4–6):57–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura S, Bilgüvar K, Ishigame K, Sestan N, Günel M, Louvi A (2015) Functional synergy between cholecystokinin receptors CCKAR and CCKBR in mammalian brain development. PLoS ONE 10:e0124295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozaki T, Mohammad S, Morioka E, Takiguchi S, Ikeda M (2013) Infant satiety depends on transient expression of cholecystokinin-1 receptors on ependymal cells lining the third ventricle in mice. J Physiol 591:1295–1312

    Article  PubMed  Google Scholar 

  • Pétrin D, Hébert TE (2012) The functional size of GPCR-monomers, dimers or tetramers? Subcell Biochem 63:67–81

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Hughes RG, Matthews EK (1988) Cyclic GMP inhibits protein kinase C-mediated secretion in rat pancreatic acini. J Biol Chem 263:3713–3719

    PubMed  CAS  Google Scholar 

  • Shen HR, Spikes JD, Kopeceková P, Kopecek J (1996a) Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl)methacrylamide copolymers. J Photochem Photobiol B Biol 34:203–210

    Article  CAS  Google Scholar 

  • Shen HR, Spikes JD, Kopecková P, Kopecek J (1996b) Photodynamic crosslinking of proteins. II. Photocrosslinking of a model protein-ribonuclease A. J Photochem Photobiol B Biol 35:213–219

    Article  CAS  Google Scholar 

  • Song Y, Ge B, Lao J, Wang Z, Yang B, Wang X, He H, Li J, Huang F (2018) Regulation of the oligomeric status of CCR3 with binding ligands revealed by single-molecule fluorescence imaging. Biochemistry 57:852–860

    Article  PubMed  CAS  Google Scholar 

  • Subbarayal P, Karunakaran K, Winkler AC, Rother M, Gonzalez E, Meyer TF, Rudel T (2015) EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog 11:e1004846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5:30–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang BJ, Liang HY, Cui ZJ (2009) Duck pancreatic acinar cell as a unique model for independent cholinergic stimulation-secretion coupling. Cell Mol Neurobiol 29:747–756

    Article  PubMed  CAS  Google Scholar 

  • Xiao R, Cui ZJ (2004) Mutual dependence of VIP/PACAP and CCK receptor signaling for a physiological role in duck exocrine pancreatic secretion. Am J Physiol Regul Integr Comp Physiol 286:R189-R198

    Article  Google Scholar 

  • Zheng X, Morgan J, Pandey SK, Chen Y, Tracy E, Baumann H, Missert JR, Batt C, Jackson J, Bellnier DA (2009) Conjugation of 2-(1′-hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to carbohydrates changes its subcellular distribution and enhances photodynamic activity in vivo. J Med Chem 52:4306–4318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Natural Science Foundation of China (Grant Nos. 31670856, 31270892) and by The Ministry of Science and Technology of China (Grant No. 2011CB809101). We would like to thank the anonymous Referee for very insightful comments which have helped to improve our MS.

Author information

Authors and Affiliations

Authors

Contributions

ZJC conceived the idea of the project, supervised the experiments and finalized the MS. WYJ performed the experiments and wrote the initial drafts. YL and ZYL helped in the design and interpretation of data, YL drew the 3-D structures in Fig. 4. All authors read and approved the final version for publication.

Corresponding author

Correspondence to Zong Jie Cui.

Ethics declarations

Conflict of interest

The authors (WYJ, YL, ZYL, ZJC) declare that there are no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W.Y., Li, Y., Li, Z.Y. et al. Permanent Photodynamic Cholecystokinin 1 Receptor Activation: Dimer-to-Monomer Conversion. Cell Mol Neurobiol 38, 1283–1292 (2018). https://doi.org/10.1007/s10571-018-0596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-018-0596-3

Keywords