Advertisement

Cellular and Molecular Neurobiology

, Volume 38, Issue 5, pp 1137–1143 | Cite as

Early Postnatal Development of the Lamination in the Lateral Geniculate Nucleus A-Layers in Cats

  • Natalia Merkulyeva
  • Aleksandr Mikhalkin
  • Pavel Zykin
Original Research

Abstract

The early postnatal development of the A-layers of the dorsal lateral geniculate nucleus (LGNd) was investigated in kittens aged 0–34 days by immunohistochemistry for the selective marker for neuronal differentiation (NeuN protein) and parvalbumin. We report two new facts about the LGNd development. First, there is a transient stratification of NeuN labelling in layer A, and to a lesser extent in layer A1, in kittens aged 0 and 4 days. Second, a transient population of large cells that are located between the LGNd A-layers (interlaminar cells) showed high expression levels of both NeuN and parvalbumin. These neurons possessed both the morphological and immunohistochemical features, similar to cells in the neighbouring perigeniculate nucleus. Both NeuN-stratification and double-stained interlaminar cells gradually disappeared during the second postnatal week, and almost completely vanished by the opening of the critical period. We discuss a possible linkage between these observed transitory networks and the ON-/OFF- and X-/Y-cells development and propose that the data obtained reflect the functioning of the early environmentally independent geniculate networks.

Keywords

Lateral geniculate nucleus Cat Postnatal development NeuN Parvalbumin 

Notes

Acknowledgements

The study was supported by the Russian Foundation for Basic Research (RFBR Grant No. 16-04-01791). The authors thank the Centre for Molecular and Cell Technologies, Research Park, Saint Petersburg State University, for supporting this research. The authors also thank Nikitina Nina for animal care and Schkorbatova Polina for help with immunostaining.

Author Contributions

All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: MN. Acquisition of data: MN, MA. Analysis and interpretation of data: MN, MA. Drafting of the manuscript: MN, MA. Critical revision of the manuscript for important intellectual content: MN, MA. Statistical analysis: MN, MA. Obtained funding: MN, MA. Administrative, technical, and material support: MN, MA, ZP. Study supervision: MN.

Compliance with Ethical Standards

Conflict of interest

The authors report no conflicts of interest.

References

  1. Alekseeva OS, Gusel VV, Beznin GV, Korzhevskii DE (2015) Prospects for the application of NeuN nuclear protein as a marker of the functional state of nerve cells in vertebrates. J Evol Biochem Physiol 51:357–369.  https://doi.org/10.1134/S0022093015050014 CrossRefGoogle Scholar
  2. Bickford ME, Wei H, Eisenback MA et al (2008) Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus. J Comp Neurol 508:264–285.  https://doi.org/10.1002/cne.21671 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bowling DB, Wieniawa-Narkiewicz E (1986) The distribution of on- and off-centre X- and Y-like cells in the A layers of the cat’s lateral geniculate nucleus. J Physiol 375:561–572.  https://doi.org/10.1113/jphysiol.1986.sp016133 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burnat K (2015) Are visual peripheries forever young? Neural Plast 2015:1–13.  https://doi.org/10.1155/2015/307929 CrossRefGoogle Scholar
  5. Chalupa LM (2007) A reassessment of the role of activity in the formation of eye-specific retinogeniculate projections. Brain Res Rev 55:228–236.  https://doi.org/10.1016/j.brainresrev.2007.03.003 CrossRefPubMedGoogle Scholar
  6. Chapman B (2000) Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. Science 287:2479–2482.  https://doi.org/10.1126/science.287.5462.2479 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Crair MC, Gillespie DC, Stryker MP (1998) The role of visual experience in the development of columns in cat visual cortex. Science 279:566–570.  https://doi.org/10.1126/science.279.5350.566 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Crowley JC, Katz LC (2002) Ocular dominance development revisited. Curr Opin Neurobiol 12:104–109.  https://doi.org/10.1016/S0959-4388(02)00297-0 CrossRefPubMedGoogle Scholar
  9. Cucchiaro JB, Uhlrich DJ, Sherman SM (1991) Electron-microscopic analysis of synaptic input from the perigeniculate nucleus to the A-laminae of the lateral geniculate nucleus in cats. J Comp Neurol 310:316–336.  https://doi.org/10.1002/cne.903100304 CrossRefPubMedGoogle Scholar
  10. Daniels JD, Pettigrew JD, Norman JL (1978) Development of single-neuron responses in kitten’s lateral geniculate nucleus. J Neurophysiol 41:1373–1393.  https://doi.org/10.1152/jn.1978.41.6.1373 CrossRefPubMedGoogle Scholar
  11. Demeulemeester H, Arckens L, Vandesande F et al (1991) Calcium binding proteins as molecular markers for cat geniculate neurons. Exp Brain Res 83:513–520.  https://doi.org/10.1007/BF00229828 CrossRefPubMedGoogle Scholar
  12. Enroth-cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187:517–552.  https://doi.org/10.1113/jphysiol.1966.sp008107 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fitzgibbon T (2002) Organization of reciprocal connections between the perigeniculate nucleus and dorsal lateral geniculate nucleus in the cat: a transneuronal transport study. Vis Neurosci 19:511–520.  https://doi.org/10.1017/S0952523802194120 CrossRefPubMedGoogle Scholar
  14. Fukuda Y, Stone J (1974) Retinal distribution and central projections of Y-, X-, and W-cells of the cat’s retina. J Neurophysiol 37:749–772.  https://doi.org/10.1152/jn.1974.37.4.749 CrossRefPubMedGoogle Scholar
  15. Garraghty PE, Roe A, Sur M (1998) Specification of retinogeniculate X and Y axon arbors in cats: fundamental differences in developmental programs. Brain Res Dev Brain Res 107:227–231.  https://doi.org/10.1016/S0165-3806(97)00223-X CrossRefPubMedGoogle Scholar
  16. Hockfield S, Sur M (1990) Monoclonal antibody Cat-301 identifies Y-cells in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 300:320–330.  https://doi.org/10.1002/cne.903000305 CrossRefPubMedGoogle Scholar
  17. Hubel DH, Wiesel TN (1961) Integrative action in the cat’s lateral geniculate body. J Physiol 155:385–398.  https://doi.org/10.1113/jphysiol.1961.sp006635 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Huberman AD, Dehay C, Berland M et al (2005) Early and rapid targeting of eye-specific axonal projections to the dorsal lateral geniculate nucleus in the fetal macaque. J Neurosci 25:4014–4023.  https://doi.org/10.1523/JNEUROSCI.4292-04.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Humphrey AL, Weller RE (1988) Structural correlates of functionally distinct X-cells in the lateral geniculate nucleus of the cat. J Comp Neurol 268:448–468.  https://doi.org/10.1002/cne.902680312 CrossRefPubMedGoogle Scholar
  20. Kalil R (1978) Development of the dorsal lateral geniculate nucleus in the cat. J Comp Neurol 182:265–291.  https://doi.org/10.1002/cne.901820206 CrossRefPubMedGoogle Scholar
  21. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452.  https://doi.org/10.1016/j.tins.2004.05.013 CrossRefPubMedGoogle Scholar
  22. Kim KK, Adelstein RS, Kawamoto S (2009) Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem 284:31052–31061.  https://doi.org/10.1074/jbc.M109.052969 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lavezzi AM, Corna MF, Matturri L (2013) Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death. J Neurol Sci 329:45–50.  https://doi.org/10.1016/j.jns.2013.03.012 CrossRefPubMedGoogle Scholar
  24. Lee I, Kim J, Lee C (1999) Anatomical characteristics and three-dimensional model of the dog dorsal lateral geniculate body. Anat Rec 256:29–39CrossRefPubMedGoogle Scholar
  25. Linden DC, Guillery RW, Cucchiaro JB (1981) The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. J Comp Neurol 203:189–211.  https://doi.org/10.1002/cne.902030204 CrossRefPubMedGoogle Scholar
  26. Mangel SC, Wilson JR, Sherman SM (1983) Development of neuronal response properties in the cat dorsal lateral geniculate nucleus during monocular deprivation. J Neurophysiol 50:240–264.  https://doi.org/10.1152/jn.1983.50.1.240 CrossRefPubMedGoogle Scholar
  27. Mastronarde DN (1987) Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. J Neurophysiol 57:357–380.  https://doi.org/10.1152/jn.1987.57.2.357 CrossRefPubMedGoogle Scholar
  28. Mastronarde DN, Humphrey AL, Saul AB (1991) Lagged Y cells in the cat lateral geniculate nucleus. Vis Neurosci 7:191–200.  https://doi.org/10.1017/S0952523800004028 CrossRefPubMedGoogle Scholar
  29. Merkulyeva N, Veshchitskii A, Makarov F et al (2016) Distribution of 28 kDa calbindin-immunopositive neurons in the cat spinal cord. Front Neuroanat 9:166.  https://doi.org/10.3389/fnana.2015.00166 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mitzdorf U, Singer W (1977) Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density. J Neurophysiol 40:1227–1244.  https://doi.org/10.1152/jn.1977.40.6.1227 CrossRefPubMedGoogle Scholar
  31. Montero VM (1989) The GABA-immunoreactive neurons in the interlaminar regions of the cat lateral geniculate nucleus: light and electron microscopic observations. Exp Brain Res 75:497–512.  https://doi.org/10.1007/BF00249901 PubMedGoogle Scholar
  32. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211PubMedGoogle Scholar
  33. Norman JL, Pettigrew JD, Daniels JD (1977) Early development of X-cells in kitten lateral geniculate nucleus. Science 198:202–204.  https://doi.org/10.1126/science.905824 CrossRefPubMedGoogle Scholar
  34. Sanchez-Vives MV, Bal T, Kim U et al (1996) Are the interlaminar zones of the ferret dorsal lateral geniculate nucleus actually part of the perigeniculate nucleus? J Neurosci 16:5923–5941.  https://doi.org/10.1523/JNEUROSCI.16-19-05923.1996 CrossRefPubMedGoogle Scholar
  35. Sanderson KJ (1974) Lamination of the dorsal lateral geniculate nucleus in carnivores of the weasel (Mustelidae), raccoon (Procyonidae) and fox (Canidae) families. J Comp Neurol 153:238–266.  https://doi.org/10.1002/cne.901530303 CrossRefPubMedGoogle Scholar
  36. Sarnat HB, Nochlin D, Born DE (1998) Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system. Brain Dev 20:88–94.  https://doi.org/10.1016/S0387-7604(97)00111-3 CrossRefPubMedGoogle Scholar
  37. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.  https://doi.org/10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  38. Shatz CJ (1983) The prenatal development of the cat’s retinogeniculate pathway. J Neurosci 3:482–499.  https://doi.org/10.1523/JNEUROSCI.03-03-00482.1983 CrossRefPubMedGoogle Scholar
  39. Sherman SM (1985) Development of retinal projections to the cat’s lateral geniculate nucleus. Trends Neurosci 8:350–355.  https://doi.org/10.1016/0166-2236(85)90121-3 CrossRefGoogle Scholar
  40. Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 357:1695–1708.  https://doi.org/10.1098/rstb.2002.1161 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sherman SM, Koch C (1986) The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp Brain Res 63:1–20.  https://doi.org/10.1007/BF00235642 CrossRefPubMedGoogle Scholar
  42. Sherman SM, Spear PD (1982) Organization of visual pathways in normal and visually deprived cats. Physiol Rev 62:738–855.  https://doi.org/10.1152/physrev.1982.62.2.738 CrossRefPubMedGoogle Scholar
  43. So YT, Shapley R (1979) Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction veolcities of their inputs. Exp Brain Res 36:533–550.  https://doi.org/10.1007/BF00238521 CrossRefPubMedGoogle Scholar
  44. Speer CM, Mikula S, Huberman AD, Chapman B (2010) The developmental remodeling of eye-specific afferents in the ferret dorsal lateral geniculate nucleus. Anat Rec 293:1–24.  https://doi.org/10.1002/ar.21001 CrossRefGoogle Scholar
  45. Sretavan DW, Shatz CJ (1986) Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat’s lateral geniculate nucleus. J Neurosci 6:234–251.  https://doi.org/10.1523/JNEUROSCI.06-01-00234.1986 CrossRefPubMedGoogle Scholar
  46. Stryker MP, Zahs KR (1983) On and off sublaminae in the lateral geniculate nucleus of the ferret. J Neurosci 3:1943–1951.  https://doi.org/10.1523/JNEUROSCI.03-10-01943.1983 CrossRefPubMedGoogle Scholar
  47. Sur M (1988) Development and plasticity of retinal X and Y axon terminations in the cat’s lateral geniculate nucleus. Brain Behav Evol 31:243–251.  https://doi.org/10.1159/000116592 CrossRefPubMedGoogle Scholar
  48. Uhlrich DJ, Cucchiaro JB, Humphrey AL, Sherman SM (1991) Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus. J Neurophysiol 65:1528–1541.  https://doi.org/10.1152/jn.1991.65.6.1528 CrossRefPubMedGoogle Scholar
  49. Watanabe M, Fukuda Y (2002) Survival and axonal regeneration of retinal ganglion cells in adult cats. Prog Retin Eye Res 21:529–553.  https://doi.org/10.1016/S1350-9462(02)00037-X CrossRefPubMedGoogle Scholar
  50. Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73:400–409.  https://doi.org/10.1002/jnr.10655 CrossRefPubMedGoogle Scholar
  51. Wilson JR, Friedlander MJ, Sherman SM (1984) Fine structural morphology of identified X- and Y-cells in the cat’s lateral geniculate nucleus. Proc R Soc London Ser B 221:411–436.  https://doi.org/10.1098/rspb.1984.0042 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Natalia Merkulyeva
    • 1
    • 2
  • Aleksandr Mikhalkin
    • 1
  • Pavel Zykin
    • 3
  1. 1.Pavlov Institute of Physiology RASSaint-PetersburgRussia
  2. 2.Institute of Translational BiomedicineSaint-Petersburg State UniversitySaint-PetersburgRussia
  3. 3.Biology facultySaint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations