Skip to main content

Advertisement

Log in

Cuprizone Administration Alters the Iron Metabolism in the Mouse Model of Multiple Sclerosis

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cuprizone (CZ) is a widely used copper chelating agent to develop non-autoimmune animal model of multiple sclerosis, characterized by demyelination of the corpus callosum (CC) and other brain regions. The exact mechanisms of CZ action are still arguable, but it seems that the only affected cells are the mature oligodendrocytes, possibly via metabolic disturbances caused by copper deficiency. During the pathogenesis of multiple sclerosis, high amount of deposited iron can be found throughout the demyelinated areas of the brain in the form of extracellular iron deposits and intracellularly accumulated iron in microglia. In the present study, we used the accepted experimental model of 0.2% CZ-containing diet with standard iron concentration to induce demyelination in the brain of C57BL/6 mice. Our aim was to examine the changes of iron homeostasis in the CC and as a part of the systemic iron regulation, in the liver. Our data showed that CZ treatment changed the iron metabolism of both tissues; however, it had more impact on the liver. Besides the alterations in the expressions of iron storage and import proteins, we detected reduced serum iron concentration and iron stores in the liver, together with elevated hepcidin levels and feasible disturbances in the Fe–S cluster biosynthesis. Our results revealed that the CZ-containing diet influences the systemic iron metabolism in mice, particularly the iron homeostasis of the liver. This inadequate systemic iron regulation may affect the iron homeostasis of the brain, eventually indicating a relationship among CZ treatment, iron metabolism, and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abrahám H, Lázár G (2000) Early microglial reaction following mild forebrain ischemia induced by common carotid artery occlusion in rats. Brain Res 862(1–2):63–73

    Article  PubMed  Google Scholar 

  • Algarín C, Peirani P, Garrido M, Pizarro F, Lozoff B (2003) Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res 53(2):217–223

    Article  PubMed  CAS  Google Scholar 

  • Bénardias K, Kotsiari A, Skuljec J, Koutsoudaki PN, Gudi V, Singh V, Vulinovic F, Skripuletz T (2013) Cuprizone [bis(cyclohexylidenehydrazide)] is selectively toxic for mature oligodendrocytes. Neurotox Res 24(2):244–250

    Article  CAS  Google Scholar 

  • Benetti F, Ventura M, Salmini B et al (2010) Cuprizone neurotoxicity, copper deficiency and neurodegeneration. Neurotoxicology 31(5):509–517

    Article  PubMed  CAS  Google Scholar 

  • Condorelli DF, Dell’Albani P, Kaczmarek L et al (1990) Glial fibrillary acidic protein messenger RNA and glutamine synthetase activity after nervous system injury. J Neurosci Res 26(2):251–257

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17(2):83–93

    Article  PubMed  CAS  Google Scholar 

  • Crooks DR, Ghosh MC, Haller RG, Tong WH, Rouault TA (2010) Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron–sulfur cluster assembly machinery. Blood 115(4):860–869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Falco L, Sanchez M, Silvestri L et al (2013) Iron refractory iron deficiency anemia. Haematologica 98(6):845–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denic A, Johnson AJ, Bieber AJ, Waarington AE, Rodriguez M, Pirko I (2010) The relevance of animal models in multiple sclerosis research. Pathophysiology 18(1):21–29

    Article  CAS  Google Scholar 

  • Di Bella LM, Alampi R, Biundo F, Toscano G, Felice MR (2017) Copper chelation and interleukin-6 proinflammatory cytokine effects on expression of different proteins involved in iron metabolism in HepG2 cell line. BMC Biochem 18(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finberg KE (2009) Iron-refractory iron deficiency anemia. Semin Hematol 46(4):378–386

    Article  PubMed  CAS  Google Scholar 

  • Galy B, Ferring-Appel D, Sauer SW et al (2010) Iron regulatory proteins secure mitochondrial iron sufficiency and function. Cell Metab 12(2):194–201

    Article  PubMed  CAS  Google Scholar 

  • Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93(4):1721–1741

    Article  PubMed  CAS  Google Scholar 

  • Graber MB, Kreutzberg GW (1985) Immuno gold staining (IGS) for electron microscopical demonstration of glial fibrillary acidic (GFA) protein in LR white embedded tissue. Histochemistry 83(6):497–500

    Article  PubMed  CAS  Google Scholar 

  • Gudi V, Khiabani-Moharregh D, Skripuletz T et al (2009) Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res 1283:127–138

    Article  PubMed  CAS  Google Scholar 

  • Gudi V, Gingele S, Skripuletz T, Stangel M (2014) Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 8:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hametner S, Wimmer I, Haider L, Pfeifenbring S, Brück W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74(6):848–861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heidari M, Gerami SH, Bassett B et al (2016) Pathological relationships involving iron and myelin may constitute a shared mechanism linking various rare and common brain diseases. Rare Dis 4(1):e1198458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of Mammalian iron metabolism. Cell 142(1):24–38

    Article  PubMed  CAS  Google Scholar 

  • Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92(1–2):38–49

    Article  PubMed  CAS  Google Scholar 

  • Irvine AK, Blakemore WF (2006) Age increases axon loss associated with primary demyelination in cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 175(1–2):69–76

    Article  PubMed  CAS  Google Scholar 

  • Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32(5):1208–1215

    Article  PubMed  CAS  Google Scholar 

  • Jeyasingham MD, Rooprai HK, Dexter D, Pratt OE, Komoly S (1998) Zinc supplementation does not prevent cuprizone toxicity in the brain of mice. Neurosci Res Commun 22(3):181–187

    Article  CAS  Google Scholar 

  • Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736

    Article  PubMed  Google Scholar 

  • Komoly S, Jeyasingham MD, Pratt OE, Lantos PL (1987) Decrease in oligodendrocyte carbonic anhydrase activity preceding myelin degeneration in cuprizone induced demyelination. J Neurol Sci 79(1–2):141–148

    Article  PubMed  CAS  Google Scholar 

  • Lenartowicz M, Starzynski RR, Krzeptowski W et al (2014) Haemolysis and perturbations in the systemic iron metabolism of suckling, copper-deficient mosaic mutant mice: an animal model of menkes disease. PLoS ONE 9(9):e107641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14(2):183–193

    Article  PubMed  CAS  Google Scholar 

  • Moldovan N, Al-Ebraheem A, Lobo L, Park R, Farquharson MJ, Bock NA (2015) Altered transition metal homeostasis in the cuprizone model of demyelination. Neurotoxicology 48:1–8

    Article  PubMed  CAS  Google Scholar 

  • Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, Boddeke HW (2012) Identification of a microglia phenotype supportive of remyelination. Glia 60(2):306–321

    Article  PubMed  Google Scholar 

  • Ortiz E, Pasquini JM, Thompson K, Felt B, Butkus G, Beard J, Connor JR (2004) Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res 77(5):681–689

    Article  PubMed  CAS  Google Scholar 

  • Poli M, Asperti M, Ruzzenenti P, Regoni M, Arosio P (2014) Hepcidin antagonists for potential treatments of disorders with hepcidin excess. Front Pharmacol 5:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance of multiple sclerosis. Neurosci Biobehav Rev 47:485–505

    Article  PubMed  CAS  Google Scholar 

  • Ramey G, Deschemin JC, Durel B, Canonne-Hergaux F, Nicolas G, Vaulont S (2010) Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 95(3):501–504

    Article  PubMed  CAS  Google Scholar 

  • Rawji KS, Mishra MK, Yong VW (2016) Regenerative capacity of macrophages for remyelination. Front Cell Dev Biol 4:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Reimer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331(2):370–375

    Article  CAS  Google Scholar 

  • Rishi G, Wallace DF, Subramaniam VN (2015) Hepcidin: regulation of the master iron regulator. Biosci Rep 35(3):e00192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rouault TA (2001) Systemic iron metabolism: a review and implications for brain iron metabolism. Pediatr Neurol 25(2):130–137

    Article  PubMed  CAS  Google Scholar 

  • Rouault TA, Cooperman S (2006) Brain iron metabolism. Semin Pediatr Neurol 13(3):142–148

    Article  PubMed  Google Scholar 

  • Sangkhae V, Nemeth E (2017) Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 8(1):126–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Steelman AJ, Thompson JP, Li J (2011) Demyelination and remyelination in anatomically distinct regions of the corpus callosum following cuprizone intoxication. Neurosci Res 72(1):32–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stiban J, So M, Kaguni LS (2016) Iron-sulfur clusters in mitochondrial metabolism: multifaceted roles of a simple cofactor. Biochemistry 81(10):1066–1080

    PubMed  CAS  Google Scholar 

  • Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJ (2003) Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 13(3):329–339

    Article  PubMed  Google Scholar 

  • Taylor LC, Gilmore W, Ting JP, Matsushima GK (2010) Cuprizone induces similar demyelination in male and female C57BL/6 mice and results in disruption of the estrous cycle. J Neurosci Res 88(2):391–402

    Article  PubMed  CAS  Google Scholar 

  • Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR (2009) Oligodendrocytes and myelination: the role of iron. Glia 57(5):467–478

    Article  PubMed  Google Scholar 

  • Todorich B, Zhang X, Connor JR (2011) H-ferritin is the major source of iron for oligodendrocytes. Glia 59(6):927–935

    Article  PubMed  Google Scholar 

  • Vincze A, Mázló M, Seress L, Komoly S, Abrahám H (2008) A correlative light and electron microscopic study of postnatal myelination in the murine corpus callosum. Int J Dev Neurosci 26(6):575–584

    Article  PubMed  CAS  Google Scholar 

  • Ward DM, Kaplan J (1823) Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta 9:1426–1433

    Google Scholar 

  • Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams R, Buchheit CL, Beman NE, LeVine SM (2012) Pathogenic implications of iron accumulation in multiple sclerosis. J Neurochem 120(1):7–25

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Yang HJ, McConomy B, Browning R, Li XM (2010) Behavioral and neurobiological changes in C57BL/6 mice exposed to cuprizone. Front Behav Neurosci 4:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye H, Rouault TA (2010) Erythropoiesis and iron sulfur cluster biogenesis. Adv Hematol 2010:329394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zohn IE, De Domenico I, Pollock A et al (2007) The flatiron mutation in mouse ferroportin acts as a dominant negative to cause ferroportin disease. Blood 109(10):4174–4180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The project has been supported by the Social Renewal Operational Programme [TÁMOP-4.2.2.A-11/1/KONV-2012-0017], the Economic Development and Innovation Operational Programme [GINOP-2.3.2-15], and the European Union, co-financed by the European Social Fund [EFOP-3.6.1-16-2016-0004].

Author information

Authors and Affiliations

Authors

Contributions

K. Sipos, S. Komoly designed the concept of the work. E. Varga and E. Pandur performed the gene expression analysis experiments. H. Abrahám performed the electron microscopy and immunohistochemistry experiments. A. Horváth carried out the MRI measurements. P. Ács and A. Miseta participated in data analysis and interpretation. All authors helped to draft and revise the manuscript.

Corresponding author

Correspondence to K. Sipos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animals were maintained under SPF conditions under permits BAI/01/1390-003/2013 (issued by the Baranya County Government Office) and SF/688-18/2013 and SF/27-1/2014 (issued by the Ministry of Agriculture).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, E., Pandur, E., Abrahám, H. et al. Cuprizone Administration Alters the Iron Metabolism in the Mouse Model of Multiple Sclerosis. Cell Mol Neurobiol 38, 1081–1097 (2018). https://doi.org/10.1007/s10571-018-0578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-018-0578-5

Keywords

Navigation