Cellular and Molecular Neurobiology

, Volume 38, Issue 4, pp 797–807 | Cite as

The Applicability of Amide Proton Transfer Imaging in the Nervous System: Focus on Hypoxic-Ischemic Encephalopathy in the Neonate

  • Yang Zheng
  • Xiaoming Wang
Review Paper


In recent years, magnetic resonance imaging (MRI) has become more widely used in neonatal hypoxic-ischemic encephalopathy (HIE), involving, for example, evaluation of cerebral edema, white matter fiber bundle tracking, cerebral perfusion status, and assessment of brain metabolites. MRI has many imaging modalities. However, its application for assessing changes in the internal environment at the tissue and cellular level after hypoxia–ischemia remains a challenge and is currently the focus of intense research. Based on the exchange between amide protons of proteins and polypeptides and free water protons, amide proton transfer (APT) imaging can display changes in pH and protein concentrations in vivo. This paper is a review of the principles of APT imaging, with a focus on the potential application of APT imaging for neonatal HIE.


Neonatal Hypoxic-ischemic encephalopathy Magnetic resonance imaging Amide proton transfer pH-sensitive Protein 



This study was supported by the National Natural Science Foundation of China (Nos. 30570541, 30770632, 81271631) and the Outstanding Scientific Fund of Shengjing Hospital (No. 201402).

Author Contributions

Yang Zheng, data acquisition, analysis, and writing. Xiaoming Wang, study concept and design, critical revision of manuscript for intellectual content.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animals performed by any of the authors.

Informed Consent

Informed consent was not applicable in the study.


  1. Amaral AI, Teixeira AP, Martens S, Bernal V, Sousa MF, Alves PM (2010) Metabolic alteration induced by ischemia in primary cultures of astrocytes: merging 13C-NMR spectroscopy and metabolic flux analysis. Neurochem 113(3):735–748CrossRefGoogle Scholar
  2. Ancora G, Testa C, Grand S et al (2013) Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxicischemic encephalopathy treated by brain cooling. Neuroradiology 55(8):1017–1025PubMedCrossRefGoogle Scholar
  3. Bai Y, Lin Y, Zhang W, Kong L, Wang L, Zuo P, Vallines I, Schmitt B, Tian J, Song X, Zhou J, Wang M (2017) Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget 8(4):5834–5842PubMedGoogle Scholar
  4. Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166(1 pt 1):173–180PubMedCrossRefGoogle Scholar
  5. Boudes E, Gilbert G, Leppert IR, Tan X, Pike GB, Saint-Martin C, Wintermark P (2017) Measurement of brain perfusion in newborns: pulsed arterial spin labeling (PASL) versus pseudo-continuous arterial spin labeling (pCASL). Neuroimage Clin 6:126–133CrossRefGoogle Scholar
  6. Brad M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119(1):37–53CrossRefGoogle Scholar
  7. Camargo N, Goudriaan A, van Deijk AF et al (2017) Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol 15(5):e1002605PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cavalleri F, Lugli L, Pugliese M, D’Amico R, Todeschini A, Della Casa E, Gallo C, Frassoldati R, Ferrari F (2014) Prognostic value of diffusion-weighted imaging summation scores or apparent diffusion coefficient maps in newborns with hypoxic-ischemic encephalopathy. Pediatr Radiol 44(9):1141–1154PubMedCrossRefGoogle Scholar
  9. Choi YS, Ahn SS, Lee SK, Chang JH, Kang SG, Kim SH, Zhou J (2017) Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume. Eur Radiol 27(8):3181–3189PubMedCrossRefGoogle Scholar
  10. De Vis JB, Hendrikse J, Petersen ET, de Vries LS, van Bel F, Alderliesten T, Negro S, Groenendaal F, Benders MJ (2015) Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy. Eur Radiol 25(1):113–121PubMedCrossRefGoogle Scholar
  11. Dickey EJ, Long SN, Hunt RW (2011) Hypoxic ischemic encephalopathy—what can we learn from humans? J Vet Intern Med 25(6):1231–1240PubMedCrossRefGoogle Scholar
  12. Distefano G, Praticò AD (2010) Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy. Ital J Pediatr 36:63PubMedPubMedCentralCrossRefGoogle Scholar
  13. Girard N, Raybaud C, du Lac P (1991) MRI study of brain myelination. J Neuroradiol 18(4):291–307PubMedGoogle Scholar
  14. Guo Y, Zhou IY, Chan ST et al (2016) pH-sensitive MRI demarcates graded tissue acidification during acute stroke—pH specificity enhancement with magnetization transfer and relaxation-normalized amide proton transfer (APT) MRI. Neuroimage 141:242–249PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hapuarachchi T, Moroz T, Bainbridge A, Price D, Cady E, Baer E, Broad K, Ezzati M, Thomas D, Golay X, Robertson NJ, Tachtsidis I (2013) Modelling blood flow and metabolism in the piglet brain during hypoxia-ischaemia: simulating pH changes. Adv Exp Med Biol 798:331–337CrossRefGoogle Scholar
  16. Harston GW, Tee YK, Blockley N et al (2015) Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging. Brain 138(Pt 1):36–42PubMedCrossRefGoogle Scholar
  17. Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64PubMedCrossRefGoogle Scholar
  18. Hua J, Jones CK, Blakeley J, Smith SA, van Zijl PCM, Zhou J (2007) Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain. Magn Reson Med 58:786–793PubMedPubMedCentralCrossRefGoogle Scholar
  19. Jeong HK, Han K, Zhou J, Zhao Y, Choi YS, Lee SK, Ahn SS (2017) Characterizing amide proton transfer imaging in haemorrhage brain lesions using 3 T MRI. Eur Radiol 27(4):1577–1584PubMedCrossRefGoogle Scholar
  20. Jin T, Wang P, Zong X, Kim SG (2013) MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T. Magn Reson Med 69(3):760–770PubMedCrossRefGoogle Scholar
  21. Jokivarsi KT, Gröhn HI, Gröhn OH, Kauppinen RA (2007) Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia. Magn Reson Med 57(4):647–653PubMedCrossRefGoogle Scholar
  22. Lai MC, Yang SN (2011) Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol 2011:609813PubMedCrossRefGoogle Scholar
  23. Lee YK, Penn A, Patel M, Pandit R, Song D, Ha BY (2017) Hypothermia-treated neonates with hypoxic-ischemic encephalopathy: optimal timing of quantitative ADC measurement to predict disease severity. Neuroradiol J 30(1):28–35PubMedCrossRefGoogle Scholar
  24. Lemmon ME, Wagner MW, Bosemani T, Carson KA, Northington FJ, Huisman TA, Poretti A (2017) Diffusion tensor imaging detects occult cerebellar injury in severe neonatal hypoxic-ischemic encephalopathy. Dev Neurosci. doi: 10.1159/000454856 PubMedPubMedCentralGoogle Scholar
  25. Li AX, Hudson RH, Barrett JW, Jones CK, Pasternak SH, Bartha R (2008) Four-pool modeling of proton exchange processes in biological systems in the presence of MRI-paramagnetic chemical exchange saturation transfer (PARACEST) agents. Magn Reson Med 60(5):1197–1206PubMedCrossRefGoogle Scholar
  26. Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA 105:2266–2270PubMedPubMedCentralCrossRefGoogle Scholar
  27. Liu AA, Voss HU, Dyke JP et al (2011) Arterial spin labeling and altered cerebral blood flow patterns in the minimally conscious state. Neurology 77(16):1518–1523PubMedPubMedCentralCrossRefGoogle Scholar
  28. Liu D, Zhou J, Xue R, Zuo Z, An J, Wang DJ (2013) Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 Tesla. Magn Reson Med 70(4):1070–1081PubMedCrossRefGoogle Scholar
  29. Luo XJ, Chen M, Zhang C, Song GD, Li CM, Gong T, Zhou JY (2016) Preliminary application of amide proton transfer imaging signal in acute ischemic stroke. Zhonghua Yi Xue Za Zhi 96(29):2336–2341PubMedGoogle Scholar
  30. Ma H, Zavala JA, Teoh H et al (2009) Fragmentation of the classical magnetic resonance mismatch “ penumbral” pattern with time. Stroke 40(12):3752–3757PubMedCrossRefGoogle Scholar
  31. Ma X, Bai Y, Lin Y, Hong X, Liu T, Ma L, Haacke EM, Zhou J, Wang J, Wang M (2017) Amide proton transfer magnetic resonance imaging in detecting intracranial hemorrhage at different stages: a comparative study with susceptibility weighted imaging. Sci Rep 7:45696PubMedPubMedCentralCrossRefGoogle Scholar
  32. Mehrabian H, Desmond KL, Soliman H, Sahgal A, Stanisz GJ (2017) Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer. Clin Cancer Res 23(14):3667–3675PubMedCrossRefGoogle Scholar
  33. Mori S, Eleff SM, Pilatus U, Mori N, van Zijl PC (1998) Proton NMR spectroscopy of solvent saturable resonance: a new approach to study pH effects in situ. Magn Reson Med 40(1):36–42PubMedCrossRefGoogle Scholar
  34. Niwa T, de Vries LS, Benders MJ et al (2011) Punctate white matter lesions in infants: new insights using susceptibility-weighted imaging. Neuroradiology 53(9):669–679PubMedPubMedCentralCrossRefGoogle Scholar
  35. Pandit AS, Ball G, Edwards AD et al (2013) Diffusion magnetic resonance imaging in preterm brain injury. Neuroradiology 55(suppl 2):65–95PubMedCrossRefGoogle Scholar
  36. Park JE, Kim HS, Park KJ et al (2015) Histogram analysis of amide proton transfer imaging to identify contrast-enhancing low-grade brain tumor that mimics high-grade tumor: increased accuracy of MR perfusion. Radiology 277(1):151–161PubMedCrossRefGoogle Scholar
  37. Reid E, Graham D, Lopez-Gonzalez MR, Holmes WM, Macrae IM, McCabe C (2012) Penumbra detection using PWI/DWI mismatch MRI in a rat stroke model with and without comorbidity: comparison of methods. J Cereb Blood Flow Metab 32(9):1765–1777PubMedPubMedCentralCrossRefGoogle Scholar
  38. Riljak V, Kraf J, Daryanani A, Jiruška P, Otáhal J (2016) Pathophysiology of perinatal hypoxic-ischemic encephalopathy—biomarkers, animal models and treatment perspectives. Physiol Res 65(Supplementum 5):S533–S545PubMedGoogle Scholar
  39. Sagiyama K, Watanabe Y, Nishie A et al (2015) Recent advances in MR imaging for cancer diagnosis. Gan To Kagaku Ryoho 42(3):257–260PubMedGoogle Scholar
  40. Sakata A, Fushimi Y, Okada T, Arakawa Y, Kunieda T, Minamiguchi S, Kido A, Sakashita N, Miyamoto S, Togashi K (2017) Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors. J Magn Reson Imaging. doi: 10.1002/jmri.25597 PubMedGoogle Scholar
  41. Saliou G, Krings T, Rutgers DR, Toulgoat F, Ozanne A, Lasjaunias P, Ducreux D (2011) PWI-MRI and contrast extravasation in brain AVM help to estimate angiogenic activity. Neuroradiology 53(10):793–800PubMedCrossRefGoogle Scholar
  42. Sherman JH et al (2011) Neurosurgery for brain tumors: update on recent technical advances. Curr Neurol Neurosci Rep 11(3):313–319PubMedCrossRefGoogle Scholar
  43. Song G, Li C, Luo X, Zhao X, Zhang S, Zhang Y, Jiang S, Wang X, Chen Y, Chen H, Gong T, Zhou J, Chen M (2017) Evolution of cerebral ischemia assessed by amide Proton Transfer-Weighted MRI. Front Neurol 8:67PubMedPubMedCentralGoogle Scholar
  44. Sun PZ (2010) Simplified and scalable numerical solution for describing multi-pool chemical exchange saturation transfer (CEST) MRI contrast. J Magn Reson 205(2):235–241PubMedPubMedCentralCrossRefGoogle Scholar
  45. Sun PZ, van Zijl PC, Zhou J (2005) Optimization of the irradiation power in chemical exchange dependent saturation transfer experiments. J Magn Reson 175(2):193–200PubMedCrossRefGoogle Scholar
  46. Sun PZ, Zhou J, Huang J, van Zijl P (2007a) Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia. Magn Reson Med 57(2):405–410PubMedCrossRefGoogle Scholar
  47. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC (2007b) Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 27(6):1129–1136PubMedCrossRefGoogle Scholar
  48. Sun PZ, Benner T, Copen WA, Sorensen AG (2010) Early experience of translating pH-weighted MRI to image human subjects at 3 Tesla. Stroke 41(suppl 10):S147–S151PubMedPubMedCentralCrossRefGoogle Scholar
  49. Sun PZ, Wang E, Cheung JS (2012) Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI--correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH. NeuroImage 60(1):1–6PubMedCrossRefGoogle Scholar
  50. Tietze A, Blicher J, Mikkelsen IK, Østergaard L, Strother MK, Smith SA, Donahue MJ (2014) Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI. NMR Biomed 27(2):163–174PubMedCrossRefGoogle Scholar
  51. Togao O, Yoshiura T, Keupp J, Hiwatashi A, Yamashita K, Kikuchi K, Suzuki Y, Suzuki SO, Iwaki T, Hata N, Mizoguchi M, Yoshimoto K, Sagiyama K, Takahashi M, Honda H (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16(3):441–448PubMedCrossRefGoogle Scholar
  52. Togao O, Hiwatashi A, Yamashita K et al (2017) Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol 27(2):578–588PubMedCrossRefGoogle Scholar
  53. Tortora D, Severino M, Malova M, Parodi A, Morana G, Ramenghi LA, Rossi A (2016) Variability of cerebral deep venous system in preterm and term neonates evaluated on MR SWI venography. AJNR Am J Neuroradiol 37(11):2144–2149CrossRefGoogle Scholar
  54. Van Zijl PC, Yadav NN (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65(4):927–948PubMedPubMedCentralCrossRefGoogle Scholar
  55. Van Zijl PC, Zhou J, Mori N, Payen JF, Wilson D, Mori S (2003) Mechanism of magnetization transfer during on resonance water saturation: a new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 49(3):440–449PubMedCrossRefGoogle Scholar
  56. Wagner F, Haenggi MM, Wagner B, Weck A, Weisstanner C, Grunt S, Z’Graggen WJ, Gralla J, Wiest R, Verma RK (2015) The value of susceptibility-weighted imaging (SWI) in patients with non-neonatal hypoxic-ischemic encephalopathy. Resuscitation 88:75–80PubMedCrossRefGoogle Scholar
  57. Wang HW, Wang XM, Guo QY (2012a) The correlation between DTI parameters and levels of AQP-4 in the early phases of cerebral edema after hypoxic-ischemic/reperfusion injury in piglets. Pediatr Radiol 42(8):992–999PubMedCrossRefGoogle Scholar
  58. Wang S, Tryggestad E, Zhou T, Armour M, Wen Z, Fu DX, Ford E, van Zijl PC, Zhou J (2012b) Assessment of MRI parameters as imaging biomarkers for radiation necrosis in the rat brain. Int J Radiat Oncol Biol Phys 83(3):e431–e436PubMedPubMedCentralCrossRefGoogle Scholar
  59. Wells JA, O’Callaghan JM, Holmes HE et al (2015) In vivo imaging of tau pathology using multi-parametric quantitative MRI. Neuroimage 111:369–378PubMedPubMedCentralCrossRefGoogle Scholar
  60. Wen Z, Hu S, Huang F, Wang X, Guo L, Quan X, Wang S, Zhou J (2010) MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage 51(2):616–622PubMedPubMedCentralCrossRefGoogle Scholar
  61. Winter JD, Lee DS, Hung RM, Levin SD, Rogers JM, Thompson RT, Gelman N (2007) Apparent diffusion coefficient pseudonormalization time in neonatal hypoxic-ischemic encephalopathy. Pediatr Neurol 37(4):255–262PubMedCrossRefGoogle Scholar
  62. Wisnowski JL, Wu TW, Reitman AJ, McLean C, Friedlich P, Vanderbilt D (2016a) The effects of therapeutic hypothermia on cerebral metabolism in neonates with hypoxic-ischemic encephalopathy: an in vivo 1H-MR spectroscopy study. J Cereb Blood Flow Metab 36(6):1075–1086PubMedCrossRefGoogle Scholar
  63. Wisnowski JL, Wu TW, Reitman AJ, McLean C, Friedlich P, Vanderbilt D, Ho E, Nelson MD, Panigrahy A, Blüml S (2016b) The effects of therapeutic hypothermia on cerebral metabolism in neonates with hypoxic-ischemic encephalopathy: an in vivo 1H-MR spectroscopy study. J Cereb Blood Flow Metab 36(6):1075–1086PubMedCrossRefGoogle Scholar
  64. Wolf RL, Alsop DC, McGarvey ML et al (2003) Susceptibility contrast and arterial spin labeled perfusion MRI in cerebrovascular disease. J Neuroimaging 13(1):17–27PubMedCrossRefGoogle Scholar
  65. Wyss C, Tse DHY, Kometer M, Dammers J, Achermann R, Shah NJ, Kawohl W, Neuner I (2017) GABA metabolism and its role in gamma-band oscillatory activity during auditory processing: An MRS and EEG study. Hum Brain Mapp 38(8):3975–3987PubMedCrossRefGoogle Scholar
  66. Yıldız EP, Ekici B, Tatlı B (2017) Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother 17(5):449–459PubMedCrossRefGoogle Scholar
  67. Yu Y, Lee DH, Peng SL, Zhang K, Zhang Y, Jiang S, Zhao X, Heo HY, Wang X, Chen M, Lu H, Li H, Zhou J (2016) Assessment of glioma response to radiotherapy using multiple MRI biomarkers with manual and semiautomated segmentation algorithms. J Neuroimaging 26(6):626–634PubMedPubMedCentralCrossRefGoogle Scholar
  68. Yu H, Lou H, Zou T, Wang X, Jiang S, Huang Z, Du Y, Jiang C, Ma L, Zhu J, He W, Rui Q, Zhou J, Wen Z (2017) Applying protein-based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma. Eur Radiol. doi: 10.1007/s00330-017-4867-z Google Scholar
  69. Zhang H, Kang H, Zhao X, Jiang S, Zhang Y, Zhou J, Peng Y (2016) Amide proton transfer (APT) MR imaging and magnetization transfer (MT) MR imaging of pediatric brain development. Eur Radiol 26(10):3368–3376PubMedPubMedCentralCrossRefGoogle Scholar
  70. Zhang H, Wang W, Jiang S, Zhang Y, Heo HY, Wang X, Peng Y, Wang J, Zhou J (2017a) Amide proton transfer-weighted MRI detection of traumatic brain injury in rats. J Cereb Blood Flow Metab. doi: 10.1177/0271678X17690165 Google Scholar
  71. Zhang XY, Wang F, Li H, Xu J, Gochberg DF, Gore JC, Zu Z (2017b) Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects. NMR Biomed. doi: 10.1002/nbm.3716 Google Scholar
  72. Zhao X, Wen Z, Huang F, Lu S, Wang X, Hu S, Zu D, Zhou J (2011) Saturation power dependence of amide proton transfer (APT) image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66(4):1033–1041PubMedPubMedCentralCrossRefGoogle Scholar
  73. Zhao X, Wen Z, Zhang G, Huang F, Lu S, Wang X, Hu S, Chen M, Zhou J (2013) Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol 15(1):114–122PubMedPubMedCentralCrossRefGoogle Scholar
  74. Zheng Y, Wang XM (2017) Measurement of lactate content and amide proton transfer values in the Basal Ganglia of a neonatal piglet hypoxic-ischemic brain injury model using MRI. AJNR Am J Neuroradiol 38(4):827–834PubMedCrossRefGoogle Scholar
  75. Zheng Y, Wang X, Zhao X (2016) Magnetization transfer and amide proton transfer MRI of neonatal brain development. Biomed Res Int 2016:3052723PubMedPubMedCentralGoogle Scholar
  76. Zhou J, van Zijl PC (2011) Defining an acidosis-based ischemic penumbra from pH-weighted MRI. Transl Stroke Res 3(1):76–83PubMedPubMedCentralCrossRefGoogle Scholar
  77. Zhou J, Lal B, Wilson DA et al (2003a) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50(6):1120–1126PubMedCrossRefGoogle Scholar
  78. Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC (2003b) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9(8):1085–1090PubMedCrossRefGoogle Scholar
  79. Zhou J, Wilson DA, Sun PZ, Klaus JA, van Zijl PCM (2004) Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 51(5):945–952PubMedCrossRefGoogle Scholar
  80. Zhou J, Payen J, van Zijl PC (2005) The interaction between magnetization transfer and blood-oxygen-level-dependent effects. Magn Reson Med 53(2):356–366PubMedCrossRefGoogle Scholar
  81. Zhou J, Yan K, Zhu H (2012) A simple model for understanding the origin of the amide proton transfer MRI signal in tissue. Appl Magn Reson 42(3):393–402PubMedPubMedCentralCrossRefGoogle Scholar
  82. Zhou IY, Wang E, Cheung JS, Zhang X, Fulci G, Sun PZ (2017) Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting. Sci Rep 7(1):84PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of RadiologyShengjing Hospital of China Medical UniversityShenyangPeople’s Republic of China

Personalised recommendations