Cellular and Molecular Neurobiology

, Volume 38, Issue 4, pp 777–782 | Cite as

Macrophages Generate Pericytes in the Developing Brain

  • Pedro H. D. M. Prazeres
  • Viviani M. Almeida
  • Luiza Lousado
  • Julia P. Andreotti
  • Ana E. Paiva
  • Gabryella S. P. Santos
  • Patrick O. Azevedo
  • Luanny Souto
  • Gregório G. Almeida
  • Renato Filev
  • Akiva Mintz
  • Ricardo Gonçalves
  • Alexander Birbrair
Commentary

Abstract

Pericytes are defined by their anatomical location encircling blood vessels' walls with their long projections. The exact embryonic sources of cerebral pericytes remain poorly understood, especially because of their recently revealed diversity. Yamamoto et al. (Sci Rep 7(1):3855, 2017) using state-of-the-art techniques, including several transgenic mice models, reveal that a subpopulation of brain pericytes are derived from phagocytic macrophages during vascular development. This work highlights a new possible ancestor of brain pericytes. The emerging knowledge from this research may provide new approaches for the treatment of several neurodevelopmental disorders in the future.

Keywords

Pericytes Brain Development Origin 

Notes

Acknowledgements

Alexander Birbrair is supported by a grant from Pró-reitoria de Pesquisa/Universidade Federal de Minas Gerais (PRPq/UFMG) (Edital 05/2016); Akiva Mintz is supported by the National Institute of Health (1R01CA179072-01A1) and by the American Cancer Society Mentored Research Scholar Grant (124443-MRSG-13-121-01-CDD).

Author’s Contribution

PHDMP, AEP, VMA, LL, JPA, and AB elaborated the figure. PHDMP, VMA, LL, JPA, AEP, GSPS, POA, LS, GGA, RF, AM, RG, and AB wrote the manuscript. All of the authors discussed the results in Yamamoto et al. (2017) and commented on the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. Allsopp G, Gamble HJ (1979) An electron microscopic study of the pericytes of the developing capillaries in human fetal brain and muscle. J Anat 128(Pt 1):155–168PubMedPubMedCentralGoogle Scholar
  2. Almeida VM, Paiva AE, Sena IFG, Mintz A, Magno LAV, Birbrair A (2017) Pericytes make spinal cord breathless after injury. Neuroscientist (in press)Google Scholar
  3. Andreotti JP, Lousado L, Magno LAV, Birbrair A (2017) Hypothalamic neurons take center stage in the neural stem cell niche. Cell Stem Cell 21(3):293–294. doi: 10.1016/j.stem.2017.08.005
  4. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. doi: 10.1016/j.devcel.2011.07.001 CrossRefPubMedGoogle Scholar
  5. Asada N, Kunisaki Y, Pierce H, Wang Z, Fernandez NF, Birbrair A, Ma’ayan A, Frenette PS (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19(3):214–223. doi: 10.1038/ncb3475 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Asahina K, Zhou B, Pu WT, Tsukamoto H (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53(3):983–995. doi: 10.1002/hep.24119 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Austyn JM, Gordon S (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11(10):805–815CrossRefPubMedGoogle Scholar
  8. Azevedo PO, Lousado L, Paiva AE, Andreotti JP, Santos GSP, Sena IFG, Prazeres PHDM, Filev R, Mintz A, Birbrair A (2017) Endothelial cells maintain neural stem cells quiescent in their niche. Neuroscience. doi: 10.1016/j.neuroscience.2017.08.059
  9. Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R (2001) Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14(10):1651–1658CrossRefPubMedGoogle Scholar
  10. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427. doi: 10.1016/j.neuron.2010.09.043 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC (1998) Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82(2):221–231CrossRefPubMedGoogle Scholar
  12. Birbrair A, Delbono O (2015) Pericytes are essential for skeletal muscle formation. Stem Cell Rev 11(4):547–548. doi: 10.1007/s12015-015-9588-6 CrossRefPubMedGoogle Scholar
  13. Birbrair A, Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci. doi: 10.1111/nyas.13016 PubMedPubMedCentralGoogle Scholar
  14. Birbrair A, Wang ZM, Messi ML, Enikolopov GN, Delbono O (2011) Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PLoS ONE 6(2):e16816. doi: 10.1371/journal.pone.0016816 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013a) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22(16):2298–2314. doi: 10.1089/scd.2012.0647 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013b) Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Exp Cell Res 319(1):45–63. doi: 10.1016/j.yexcr.2012.09.008 CrossRefPubMedGoogle Scholar
  17. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013c) Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10(1):67–84. doi: 10.1016/j.scr.2012.09.003 CrossRefPubMedGoogle Scholar
  18. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2013d) Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 305(11):C1098–C1113. doi: 10.1152/ajpcell.00171.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang Z-M, Messi ML, Mintz A, Delbono O (2014a) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5(6):122. doi: 10.1186/scrt512 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2014b) Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 6:245. doi: 10.3389/fnagi.2014.00245 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014c) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38. doi: 10.1152/ajpcell.00084.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2015) Pericytes at the intersection between tissue regeneration and pathology. Clin Sci 128(2):81–93. doi: 10.1042/CS20140278 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Birbrair A, Borges IDT, Gilson Sena IF, Almeida GG, da Silva Meirelles L, Goncalves R, Mintz A, Delbono O (2017a) How plastic are pericytes? Stem Cells Dev. doi: 10.1089/scd.2017.0044 PubMedGoogle Scholar
  24. Birbrair A, Sattiraju A, Zhu D, Zulato G, Batista I, Nguyen VT, Messi ML, Solingapuram Sai KK, Marini FC, Delbono O, Mintz A (2017b) Novel peripherally derived neural-like stem cells as therapeutic carriers for treating glioblastomas. Stem Cells Transl Med 6(2):471–481. doi: 10.5966/sctm.2016-0007 CrossRefPubMedGoogle Scholar
  25. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. doi: 10.1038/ni.1937 CrossRefPubMedGoogle Scholar
  26. Borges IDT, Sena IFG, de Azevedo PO, Andreotti JP, de Almeida VM, de Paiva AE, Pinheiro Dos Santos GS, de Paula Guerra DA, Dias Moura Prazeres PH, Mesquita LL, Silva LSB, Leonel C, Mintz A, Birbrair A (2017) Lung as a niche for hematopoietic progenitors. Stem Cell Rev Rep. doi: 10.1007/s12015-017-9747-z Google Scholar
  27. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH (2016) Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun 7:12422. doi: 10.1038/ncomms12422 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chitu V, Stanley ER (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 18(1):39–48. doi: 10.1016/j.coi.2005.11.006 CrossRefPubMedGoogle Scholar
  29. Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, Pinho S, Leboeuf M, Noizat C, van Rooijen N, Tanaka M, Zhao ZJ, Bergman A, Merad M, Frenette PS (2013) CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19(4):429–436. doi: 10.1038/nm.3057 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Coatti GC, Frangini M, Valadares MC, Gomes JP, Lima NO, Cavacana N, Assoni AF, Pelatti MV, Birbrair A, de Lima ACP, Singer JM, Rocha FMM, Da Silva GL, Mantovani MS, Macedo-Souza LI, Ferrari MFR, Zatz M (2017) Pericytes extend survival of ALS SOD1 mice and induce the expression of antioxidant enzymes in the murine model and in IPSCs derived neuronal cells from an ALS patient. Stem Cell Rev. doi: 10.1007/s12015-017-9752-2 PubMedGoogle Scholar
  31. Crisan M, Corselli M, Chen WC, Peault B (2012) Perivascular cells for regenerative medicine. J Cell Mol Med. doi: 10.1111/j.1582-4934.2012.01617.x Google Scholar
  32. Croker BA, Metcalf D, Robb L, Wei W, Mifsud S, DiRago L, Cluse LA, Sutherland KD, Hartley L, Williams E, Zhang JG, Hilton DJ, Nicola NA, Alexander WS, Roberts AW (2004) SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20(2):153–165CrossRefPubMedGoogle Scholar
  33. de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, Norton T, Williams K, Roderick K, Potocnik AJ, Kioussis D (2003) Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 33(2):314–325. doi: 10.1002/immu.200310005 CrossRefPubMedGoogle Scholar
  34. Dias Moura Prazeres PH, Sena IFG, Borges IDT, de Azevedo PO, Andreotti JP, de Paiva AE, de Almeida VM, de Paula Guerra DA, Pinheiro Dos Santos GS, Mintz A, Delbono O, Birbrair A (2017) Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 427(1):6–11. doi: 10.1016/j.ydbio.2017.05.001 CrossRefPubMedGoogle Scholar
  35. Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128(7):1059–1068PubMedGoogle Scholar
  36. Georgiades P, Ogilvy S, Duval H, Licence DR, Charnock-Jones DS, Smith SK, Print CG (2002) VavCre transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages. Genesis 34(4):251–256. doi: 10.1002/gene.10161 CrossRefPubMedGoogle Scholar
  37. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604. doi: 10.1016/j.immuni.2010.05.007 CrossRefPubMedGoogle Scholar
  38. Gordon S, Pluddemann A, Martinez Estrada F (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262(1):36–55. doi: 10.1111/imr.12223 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Göritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J (2011) A pericyte origin of spinal cord scar tissue. Science 333(6039):238–242. doi: 10.1126/science.1203165 CrossRefPubMedGoogle Scholar
  40. Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75(3):388–397. doi: 10.1189/jlb.0303114 CrossRefPubMedGoogle Scholar
  41. Hamann J, Koning N, Pouwels W, Ulfman LH, van Eijk M, Stacey M, Lin HH, Gordon S, Kwakkenbos MJ (2007) EMR1, the human homolog of F4/80, is an eosinophil-specific receptor. Eur J Immunol 37(10):2797–2802. doi: 10.1002/eji.200737553 CrossRefPubMedGoogle Scholar
  42. Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544. doi: 10.1038/nri2356 CrossRefPubMedGoogle Scholar
  43. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360. doi: 10.1038/nrn1387 CrossRefPubMedGoogle Scholar
  44. Joseph C, Quach JM, Walkley CR, Lane SW, Lo Celso C, Purton LE (2013) Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell 13(5):520–533. doi: 10.1016/j.stem.2013.10.010 CrossRefPubMedGoogle Scholar
  45. Khan JA, Mendelson A, Kunisaki Y, Birbrair A, Kou Y, Arnal-Estape A, Pinho S, Ciero P, Nakahara F, Ma’ayan A, Bergman A, Merad M, Frenette PS (2016) Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351(6269):176–180. doi: 10.1126/science.aad0084 CrossRefPubMedGoogle Scholar
  46. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444. doi: 10.1523/JNEUROSCI.3257-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Korn J, Christ B, Kurz H (2002) Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 442(1):78–88. doi: 10.1002/cne.1423 CrossRefPubMedGoogle Scholar
  48. Lousado L, Prazeres PHDM, Andreotti JP, Paiva AE, Azevedo PO, Santos GSP, Filev R, Mintz A, Birbrair A (2017) Schwann cell precursors as a source for adrenal gland chromaffin cells. Cell Death Dis (in press)Google Scholar
  49. Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H, Getachew R, Narasimhan R, Wabl R, Fainberg N, James ML, Wong G, Relton J, Gambhir SS, Pollard JW, Wyss-Coray T (2013) Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med 210(1):157–172. doi: 10.1084/jem.20120412 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi: 10.1038/nri2448 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nathan C (2008) Metchnikoff’s legacy in 2008. Nat Immunol 9(7):695–698. doi: 10.1038/ni0708-695 CrossRefPubMedGoogle Scholar
  52. Ogilvy S, Elefanty AG, Visvader J, Bath ML, Harris AW, Adams JM (1998) Transcriptional regulation of vav a gene expressed throughout the hematopoietic compartment. Blood 91(2):419–430PubMedGoogle Scholar
  53. Ohnishi K, Komohara Y, Saito Y, Miyamoto Y, Watanabe M, Baba H, Takeya M (2013) CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci 104(9):1237–1244. doi: 10.1111/cas.12212 CrossRefPubMedGoogle Scholar
  54. Paiva AE, Lousado L, Almeida VM, Andreotti JP, Santos GSP, Azevedo PO, Sena IFG, Prazeres PHDM, Borges IT, Azevedo V, Mintz A, Birbrair A (2017) Endothelial cells as precursors for osteoblasts in the metastatic prostate cancer bone. Neoplasia (in press)Google Scholar
  55. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201. doi: 10.1038/nrneurol.2010.17 CrossRefPubMedGoogle Scholar
  56. Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14(11):628–638. doi: 10.1016/j.tcb.2004.09.016 CrossRefPubMedGoogle Scholar
  57. Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BL (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci USA 105(43):16626–16630. doi: 10.1073/pnas.0808649105 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sena IFG, Prazeres P, Santos GSP, Borges IT, Azevedo PO, Andreotti JP, Almeida VM, Paiva AE, Guerra DAP, Lousado L, Souto L, Mintz A, Birbrair A (2017a) Identity of Gli1+ cells in the bone marrow. Exp Hematol. doi: 10.1016/j.exphem.2017.06.349 PubMedGoogle Scholar
  59. Sena IFG, Prazeres PHDM, Santos GSP, Borges IT, Azevedo PO, Andreotti JP, Almeida VM, Paiva AE, Guerra DAP, Lousado L, Souto L, Mintz A, Birbrair A (2017b) LepR+ cells dispute hegemony with Gli1+ cells in bone marrow fibrosis. Cell Cycle (in press)Google Scholar
  60. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7(11):1031–1038CrossRefPubMedGoogle Scholar
  61. Shinkai Y, Lam K-P, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM, Alt FW (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V (D) J rearrangement. Cell 68(5):855–867CrossRefPubMedGoogle Scholar
  62. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Investig 117(5):1155–1166. doi: 10.1172/JCI31422 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Simon C, Lickert H, Gotz M, Dimou L (2012) Sox10-iCreERT2: a mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis 50(6):506–515. doi: 10.1002/dvg.22003 CrossRefPubMedGoogle Scholar
  64. Sims DE (1991) Recent advances in pericyte biology—implications for health and disease. Can J Cardiol 7(10):431–443PubMedGoogle Scholar
  65. Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27(10):842–846CrossRefPubMedGoogle Scholar
  66. Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, Krishnan V, Lai-Hsu C, Park KK, Tsoulfas P, Lee JK (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33(34):13882–13887. doi: 10.1523/JNEUROSCI.2524-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, Gartner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol 14(1):41–51. doi: 10.1038/ni.2477 CrossRefPubMedGoogle Scholar
  68. Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, Rivera FJ, Reitsamer HA (2016) Brain and retinal pericytes: origin, function and role. Front Cell Neurosci 10:20. doi: 10.3389/fncel.2016.00020 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tushinski RJ, Stanley ER (1983) The regulation of macrophage protein turnover by a colony stimulating factor (CSF-1). J Cell Physiol 116(1):67–75. doi: 10.1002/jcp.1041160111 CrossRefPubMedGoogle Scholar
  70. Wilm B, Ipenberg A, Hastie ND, Burch JB, Bader DM (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132(23):5317–5328. doi: 10.1242/dev.02141 CrossRefPubMedGoogle Scholar
  71. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405. doi: 10.1038/nn.2946 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, Koo BN, Kita S, O’Donnell E, Osawa T, Takahashi H, Takano KI, Dohmoto M, Sugimori M, Usui I, Watanabe Y, Hatakeyama N, Iwamoto T, Komuro I, Takatsu K, Tobe K, Niida S, Matsuda N, Shibuya M, Sasahara M (2017) A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci Rep 7(1):3855. doi: 10.1038/s41598-017-03994-1 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yamanishi E, Takahashi M, Saga Y, Osumi N (2012) Penetration and differentiation of cephalic neural crest-derived cells in the developing mouse telencephalon. Dev Growth Differ 54(9):785–800. doi: 10.1111/dgd.12007 CrossRefPubMedGoogle Scholar
  74. Yamazaki T, Nalbandian A, Uchida Y, Li W, Arnold TD, Kubota Y, Yamamoto S, Ema M, Mukouyama YS (2017) Tissue myeloid progenitors differentiate into pericytes through TGF-beta signaling in developing skin vasculature. Cell Rep 18(12):2991–3004. doi: 10.1016/j.celrep.2017.02.069 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yotsumoto F, You WK, Cejudo-Martin P, Kucharova K, Sakimura K, Stallcup WB (2015) NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization. Oncoimmunology 4(4):e1001204. doi: 10.1080/2162402X.2014.1001204 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Pedro H. D. M. Prazeres
    • 1
  • Viviani M. Almeida
    • 1
  • Luiza Lousado
    • 1
  • Julia P. Andreotti
    • 1
  • Ana E. Paiva
    • 1
  • Gabryella S. P. Santos
    • 1
  • Patrick O. Azevedo
    • 1
  • Luanny Souto
    • 1
  • Gregório G. Almeida
    • 1
  • Renato Filev
    • 2
  • Akiva Mintz
    • 3
  • Ricardo Gonçalves
    • 1
  • Alexander Birbrair
    • 1
  1. 1.Department of PathologyFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Laboratory of NeurobiologyFederal University of São PauloSão PauloBrazil
  3. 3.Department of RadiologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations